
How are glories formed?

Philip Laven

Mie theory can be used to generate full-color simulations of atmospheric glories, but it offers no expla-
nation for the formation of glories. Simulations using the Debye series indicate that glories are caused by
rays that have suffered one internal reflection within spherical droplets of water. In 1947, van de Hulst
suggested that backscattering (i.e., scattering angle � � 180°) could be caused by surface waves, which
would generate a toroidal wavefront due to spherical symmetry. Furthermore, he postulated that the
glory is the interference pattern corresponding to this toroidal wavefront. Although van de Hulst’s
explanation for the glory has been widely accepted, the author offers a slightly different explanation.
Noting that surface waves shed radiation continuously around the droplet (not just at � � 180°),
scattering in a specific direction � � 180° � � can be considered as the vector sum of two surface waves:
one deflecting the incident light by 180° � � and the other by 180° � �. The author suggests that the glory
is the result of two-ray interference between these two surface waves. Simple calculations indicate that
this model produces more accurate results than van de Hulst’s model. © 2005 Optical Society of America

OCIS codes: 010.1290, 290.4020, 240.6690.

1. Introduction

Glories are caused by backscattering of sunlight from
small droplets of water. As surface tension ensures
that small droplets are spherical, Mie theory1 can be
used to produce full-color simulations of atmospheric
glories.2,3 A companion paper4 in this issue uses Mie
theory calculations to examine the appearance of glo-
ries as a function of droplet radius r taking into ac-
count factors such as the size distribution of the
droplets and the effects of polarization.

Despite the successful application of Mie theory to
the glory, there is no simple explanation for the for-
mation of glories. This paper reports the use of the
Debye series to identify the ray paths causing the
glory and, subsequently, quantifies the contributions
made by surface waves to the scattering processes.

All of the graphs and simulation in this paper have
been generated using the MiePlot computer program
developed by the author. This program can be down-
loaded free of charge from http://www.philiplaven.com/
mieplot.htm.

2. Debye Series

The Debye series5–7 can separate the contributions
made by light rays of order p, where p � 0 corre-
sponds to external reflection and diffraction, p � 1
corresponds to direct transmission through the
sphere, p � 2 corresponds to one internal reflection,
p � 3 corresponds to two internal reflections, and so
on. For p � 1, the number of internal reflections is
given by �p � 1�. Although it is well known from
geometric optics that p � 2 rays form the primary
rainbow and that p � 3 rays form the secondary
rainbow, the Debye series goes far beyond the limi-
tations of geometric optics by including the effects of
diffraction and surface waves. It should be noted that
the Debye series is not an approximation: the sum-
mation of the Debye series for all integer values of p
from zero to infinity gives the same result as Mie
theory.

Figure 1 shows curves of intensity calculated using
Mie theory and the Debye series for scattering of
sunlight from a spherical drop of water with radius
r � 10 �m. In this paper, the term “sunlight” implies
calculations based on a light source with an apparent
angular diameter of 0.5° with the spectrum of sun-
light between 380 nm and 700 nm as recorded at
ground level by Lee.8 The Debye p � 2 term (corre-
sponding to light that has suffered one internal re-
flection in the sphere) is dominant in forming the
colored rings of the glory. For scattering angles �
� 179°, the intensity of the p � 2 term is at least one
order of magnitude greater than that of other Debye
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terms; thus the curves for the p � 2 term and for Mie
theory are very similar in this region. However, as
� → 180°, p � 11, p � 7, p � 6, and higher-order
terms make substantial contributions to the white
central feature of the glory.

For � � 179°, the polarization parallel to the scat-
tering plane is dominant for the p � 2 and p � 6
terms, whereas the polarization perpendicular to the
scattering plane is dominant for the p � 11 and
p � 7 terms. Note that, with the exception of the
p � 0 curve (which is effectively white), the other
curves in Fig 1 show almost identical colors as a
function of �, such as the reddish colors around
� � 177.6° and 176.2°. This is unlikely to be a
coincidence!

Figure 2 shows two simulations of the glory caused
by scattering of sunlight from a spherical droplet of
water with r � 10 �m: the left side shows a simula-
tion based only on the Debye p � 2 contribution,
while the right side is based on Mie theory. The key
difference is that, as indicated in Fig. 1, Mie theory
predicts a bright white zone at the center (i.e., for
� → 180°). More importantly, both simulations pro-
duce essentially identical sequences of colored rings.
As the intensity of the p � 2 contributions shown in
Fig. 1 is, at least, an order of magnitude greater than
the intensity of other contributions, Fig. 2 indicates
that the colored rings of the glory are primarily
caused by light that has suffered only one reflection
within the water droplet.

3. Explanations for the Glory

As the above Debye-series results indicate the impor-
tance of p � 2 contributions, it is appropriate to con-
sider the geometric ray paths that might cause the
glory. The basic geometry is illustrated in Fig. 3. The

scattering angle � resulting from a ray with angle of
incidence � on a spherical droplet is defined for an
arbitrary value of p by

� � �p � 1�180° � 2	 � 2p
, (1)

where n is the refractive index and sin 
 � sin 	�n.
For p � 2, this simplifies to

� � 180° � 2	 � 4
. (2)

Figure 4 shows the results of calculations using
geometric optics for p � 2 rays and for radius

Fig. 1. Comparison of Mie-theory and Debye-series calculations for the scattering of sunlight by a spherical water drop with radius r
� 10 �m (m// and m� denote the Debye-series terms p � m for polarization-parallel and perpendicular to the scattering plane, respec-
tively). The colored bars above the graph represent the brightness and color of the scattered light calculated using Mie theory, while the
curves in the graph represent the saturated color of the scattered light.

Fig. 2. Comparison of simulations of the glory caused by scatter-
ing of sunlight by water drops of radius r � 10 �m using Debye
p � 2 term (left) and Mie theory (right) The width of this image
corresponds to an angle of about �5°.
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r � 10 �m and n � 1.333. As the dimensionless im-
pact parameter b � sin 	 increases from 0, � reduces
from 180° until it reaches a minimum value at the
primary rainbow angle of about 137.9° and then in-
creases until � � 165.6° when b � 1 (grazing inci-
dence). Such calculations show that light scattering
in the directions of interest for glories, namely, �
� 170°, can be produced by near-central p � 2 rays
(i.e., |b| � 0.2). However, the scattered light gener-
ated by such rays is not responsible for the glory:
calculations for the scattering of sunlight by these

rays results in relatively uniform white light for �
� 170°. Note that, according to geometric optics, the
intensity of the scattered light falls dramatically
when b � 0.999 (corresponding to rays incident near
the edge of the sphere).

It is important to differentiate between backscat-
tering and the glory. Numerous geometric ray paths
result in precise backscattering (i.e., � � 180°). Geo-
metric considerations predict a significant enhance-
ment in the intensity of the scattered light as
� → 180°, but geometric optics does not offer any ex-
planation for the formation of the rings of the glory,
which centers on the antisolar point � � 180°.

As illustrated in Fig. 5, van de Hulst9,10 suggested
that the glory is caused by p � 2 rays with b � 1 and
postulated that the 14.4° gap between � � 165.6° and
� � 180° could be bridged by surface waves. For
simplicity, Fig. 5 shows the gap of 14.4° as the last
part of the ray path before it emerges from the
sphere, but this gap could be covered by three sepa-
rate segments of surface waves covering a total of
14.4°. Because of symmetry of the sphere, ray paths
of the form shown in Fig. 5 generate a toroidal wave-
front, with a diameter nearly equal to that of the
sphere, propagating in the direction � � 180°. van de
Hulst explained the glory as the interference pattern
corresponding to this toroidal wavefront.

Fahlen and Bryant11 conducted an experiment in
which a water drop of 1.23 mm diameter was sus-
pended in a sound field and illuminated by a He–Ne
laser. They reported that, when the drop was viewed
from � � 180°, bright patches of light appeared near
the center of the droplet (probably corresponding to
light reflected from the front and back of the water
drop for b → 0) and around the circumference of the
sphere. Although the latter observation is consistent
with van de Hulst’s explanation, it does not provide

Fig. 5. van de Hulst’s surface wave associated with a p � 2 ray for
a sphere with refractive index n � 1.333.

Fig. 3. Path geometry for p � 2 scattering by a sphere: the inci-
dent ray is deflected by angle � � 180° � 2	 � 4
. Note that b is
the dimensionless impact parameter: b � 0 corresponds to a cen-
tral ray �	 � 0�, while b � 1 and b � �1 correspond to edge rays
with grazing incidence �	 � 90°�.

Fig. 4. Graph of intensity versus scattering angle � for geometric
p � 2 rays with refractive index n � 1.333 (the values marked
along the curves correspond to the impact parameter b).
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any information about the physical nature of the
glory-making rays or about the actual role of surface
waves.

The pioneering work of van de Hulst has been en-
dorsed and extended by many other authors.12–15 A
major contribution to our understanding of glories
has been made by Nussenzveig16–20 who, for example,
used the Debye series to analyze the relative impor-
tance of various scattering processes in the formation
of the glory. In particular, Nussenzveig’s results18,20

indicate that p � 2 contributions are dominant for
droplets with effective radius x � 2
r�� � 150, where
� is the wavelength of the light (corresponding to r
� 13 �m for scattering of white light). This finding is
consistent with the results shown in Fig. 1 of this
paper, but Nussenzveig also reported that p � 11
contributions become dominant for droplets with x
� 500 and x � 1500 (corresponding to r � 44 �m and
r � 130 �m, respectively). As discussed in the com-
panion paper4 in this issue, atmospheric glories are
hardly visible when r � 30 �m. In any event, MiePlot
calculations for r � 44 �m indicate that p � 2 con-
tributions are dominant in causing the rings of glory.
The reason for this discrepancy is probably that Nus-
senzveig’s calculations were made for � � 180° (i.e.,
only for the central feature of the glory), while the
MiePlot calculations cover the glory’s rings as well as
the central feature.

Nussenzveig has also drawn attention to the impor-
tance of resonances in forming the glory; for exam-
ple, in 2003, he wrote21 “Tunneling is the dominant
effect in backscattering. It produces the meteorological
glory . . . . The glory provides direct and visually stun-
ning experimental evidence of the importance of reso-
nances and light tunneling in clouds.”

Despite the success of van de Hulst’s theory for
the formation of the glory, various authors have
bemoaned the lack of a simple physical model for
the mechanisms causing the glory. For example,
Lynch and Livingston22 remark: “Although the
glory pattern is correctly predicted by Mie theory, a
good physical explanation is, in our opinion, lack-
ing. In some way light is backscattered after travers-
ing the periphery of the droplet. Examined in detail,
each drop is found to shine uniformly around its
edge with an annulus of light that is coherent (the
waves are in phase).” Greenler23 notes: “In one
sense, the glory is now well understood. A mathe-
matical theory (Mie scattering theory) enables us to
calculate the intensity variation in the glory pattern.
Unfortunately, it gives us little physical insight into
the process that produces the rings. . . . . I wonder if
there is no simple model containing the physical
essence of the glory.” Similarly, Bohren and Huff-
mann24 state: “Unlike the rainbow, the glory is not
easy to explain, other than to say that it is a conse-
quence of all of the thousands of terms in the scat-
tering series, a correct but unsatisfying statement.”

In a paper25 entitled “Does the glory have a simple
explanation?,” Nussenzveig tried to respond to the
above requests, but he concluded that “Mie theory
describes the glory by the sum of a large number of

complicated terms within which the physical mecha-
nisms cannot be discerned. CAM [Complex Angular
Momentum] theory brings out the dominant physical
effects and provides an accurate representation for
each of them. That it does so by analytic continuation
seems inevitable. I know of no other way of quantita-
tively representing tunneling.”

Despite this discouraging conclusion, it is perplex-
ing that the glory cannot be explained (even by emi-
nent scientists) except by “scientific arm waving.”
The rest of this paper reports attempts to quantify
the scattering contributions made by surface waves,
which seem to be the key process in the formation of
glories.

4. Surface Waves

Surface waves in optics may seem slightly mysteri-
ous. Nevertheless, the existence of surface waves in
other areas of electromagnetic wave propagation is
not in doubt: for example, vertically polarized radio
transmissions at frequencies around 1 MHz propa-
gate via “ground waves.”

Unfortunately, no rigorous method seems to be
available for calculating the intensity of scattering
caused by surface waves. Various authors7,20,26,27

have proposed approximate methods applicable to
scattering of light by small spheres, but all warn that
their approximations are not valid at � � 180° or,
indeed, near 180°. These limitations are especially
problematic for investigations of the glory! Although
these approximate methods are fairly similar, the
surface-wave calculations reported in this paper are
based on Khare’s method.26

As the scattering contributions made by surface
waves are generally much weaker than those due to
other scattering mechanisms, experimental verifica-
tion is obviously difficult. On the other hand, Debye-
series calculations can be used to isolate specific
scattering processes even if they do generate only
very weak scattering. For example, the Debye series
p � 1 term accurately defines transmission through a
sphere: for small values of �, the Debye-series term
closely matches calculations based on geometric op-
tics, as shown in Figs. 6(a) and 6(b). As geometric
optics cannot make any contribution to the p � 1
scattered intensity when � � 180° � 2 sin�1�1�n� �
82.8° for n � 1.333, another mechanism must be
responsible for scattering in these directions.

Figure 6(a) and 6(b) show that Khare’s calculation
method for surface waves gives a good approximation
to the Debye-series term for p � 1 when � � 82.8°.
There is a slight error in intensity in Fig. 6(b) (for r
� 10 �m), but the differing slopes of the curves for
the two polarizations are correctly reproduced. This
close agreement confirms that surface waves are the
dominant p � 1 scattering mechanism for � �
82.8°. As surface waves shed light continuously as
they travel along the surface of the droplet, the in-
tensity of the scattering due to surface waves reduces
exponentially with the length of the path taken by the
surface wave, thus explaining why the intensity of
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the surface waves reduces much more rapidly for r
� 100 �m [Fig. 6(a)] than for r � 10 �m [Fig. 6(b)].
This exponential decay for surface waves can also be
recognized by the fact that the “curves” of intensity
versus � in Figs. 6(a) and 6(b) are almost straight
lines (because the intensity scale is logarithmic while
the angular scale is linear). In general, the surface-
wave intensity due to parallel polarization is signifi-
cantly higher than that due to perpendicular
polarization. As most natural glories seem to be
caused by scattering from water droplets with r be-
tween 4 �m and 25 �m,4 the rest of this paper will
use examples based on the scattering of red light
�� � 650 nm� from r � 10 �m water droplets.

Note that the Debye-series term in Fig. 6(b) shows
a series of maxima and minima as � → 180°. What
causes these ripples? The top part of Fig. 7 shows a
ray with an impact parameter b � 1 taking a shortcut
through 82.8° and then propagating 92.2° clockwise

along the surface of the sphere, resulting in a scat-
tering angle � � 82.8° � 92.2° � 175°. The lower part
of Fig. 7 shows a ray with b � �1 taking a shortcut
through 82.8° and then propagating anticlockwise
102.2° along the surface of the sphere, resulting in
deflection of 82.8° � 102.2° � 185°, which is equiva-
lent to scattering angle � � 360° � 185° � 175°. Of
course, the value of � � 175° in Fig. 7 has been chosen
solely as an illustrative example. More generally,
scattering in a specific direction � � 180° � � can be
caused by two surface-wave components: the “short”
path generated by incident rays with impact param-
eter b � 1 involving a deflection of 180° � � and
the “long” path generated by incident rays with im-
pact parameter b � �1 involving a deflection of
180° � �.

Figure 8(a) shows in greater detail the ripples on
the Debye p � 1 term, together with calculations of

Fig. 6. (a) Comparison of calculation methods for p � 1 scattering
of light of wavelength � � 650 nm from a sphere of radius r �

100 �m and refractive index n � 1.333. (b) As in (a) but with r
� 10 �m.

Fig. 7. Surface-wave paths �p � 1� resulting in scattering angle
� � 175°: the upper part of this diagram shows the “short” path,
while the lower part shows the “long” path.
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the intensity due to the short- and long-path surface
waves. The long-path contributions are weaker than
the short-path contributions simply because the
longer path gives greater attenuation. The difference
in path length between the long path and the short
path also causes a phase difference between the two
contributions. Constructive interference will occur
when this phase difference is a multiple of 360°,
whereas destructive interference will occur when it is
an odd multiple of 180°. Consequently, a series of
maxima and minima will occur in the scattering pat-
tern as a function of �. Note that there is an addi-
tional phase shift of 90° between the short and long
paths because the long path crosses one focal line
more than the short path.28

Figure 8(b) compares the Debye p � 1 term with
the vector sum of the contributions from the short-
and long-path surface waves. The general shape of
the ripples in Fig. 8(b) is reassuringly similar to the
Debye-series calculation. Note that Fig. 8(a) provides
an explanation for the increasing amplitude of the

ripples as � → 180° in Fig. 8(b). When � � 150°, Fig.
8(a) indicates that the short-path surface wave is
dominant, and hence there are no ripples in this part
of Fig. 8(b). However, as � is increased toward 180°,
Fig. 8(a) shows that the intensity of the long-path
surface wave increases relative to the short-path sur-
face wave, and consequently the ripples in Fig. 8(b)
become larger. Note that these ripples correspond to
the circular rings of a glory caused by p � 1 scatter-
ing. This “mathematical” result may be surprising,
but p � 1 glories cannot be observed in practice be-
cause the intensity of the p � 2 glory is more than 5
orders of magnitude greater. Nevertheless, as surface
waves are the only p � 1 scattering mechanism ap-
plicable to � � 82.8°, the Debye p � 1 term provides
a crucial test of the accuracy of surface-wave
calculations.

Khare’s approximation overestimates the intensity
of surface waves and actually gives infinite intensity
for � � 180°. Figure 9 shows that excellent agreement
with the Debye-series calculations for p � 1 scatter-
ing (at least for � � 650 nm and r � 10 �m) can be
achieved if the amplitude calculated by Khare’s for-

Fig. 9. Comparison of Debye-series and surface-wave calculations
for parallel polarization for p � 1 scattering (N.B., Amplitude from
Khare’s formula multiplied by factor of 0.8).

Fig. 10. Difference in phase between the Debye-series and the
short-path surface-wave calculations for p � 1 scattering.

Fig. 8. (a) As in Fig. 6(b), but showing the separate contributions
from short-path and long-path surface waves (see Fig. 7). (b) As in
(a), but showing the vector sum of the short-path and long-path
surface wave contributions.
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mula is multiplied by an arbitrary value of 0.8. As the
precise locations of the maxima and minima are
slightly different, especially for perpendicular polar-
ization, this suggests that there are some phase dif-
ferences inherent in the approximation. Figure 10
compares the absolute phase of the Debye p � 1 term
with that of Khare’s approximation for the short-path
surface wave. The extreme fluctuations in Fig. 10 as
� → 180° are because the Debye term is the vector
sum of the short- and long-path surface waves,
whereas the surface-wave term is restricted to the
short path.

The discussion about surface waves has so far fo-
cused on p � 1 scattering because this facilitates
calibration of the approximate calculation methods
for surface waves against the rigorous Debye-series
calculations. As indicated in Section 2, p � 2 scatter-
ing is responsible for the colored rings of the natural
glory. It is thus necessary to extend the analysis of
surface waves to cover the p � 2 case, as in Fig. 11,
which compares the Debye-series calculations with
the surface-wave calculations. To take account of the
fact that Khare’s method overestimates the intensity
of the surface waves, the amplitude predicted by
Khare’s formula has been multiplied by an arbitrary
factor of 0.5. Although the curves for the Debye series
and for surface waves in Fig. 11 are broadly similar,
there are significant differences in detail. The prin-
cipal reason is the existence of a further p � 2 scat-
tering mechanism that is due to near-central rays
(i.e., for |b| � 0.2). As illustrated in Fig. 12, there are
three separate ray paths that, for refractive index
n � 1.333, result in � � 175°. Figure 11 includes a
curve showing the intensity of this geometric optics
p � 2 term. The scattered intensity can be calculated
by taking the vector sum of all three contributions,
but, as mentioned above, there are errors in the ab-
solute phase given by the approximate calculations
for surface waves. In the particular case of � �

650 nm and r � 10 �m, the phase error for p � 2
scattering when � � 180° is estimated to be about
40°. Figure 13 shows the vector sum of the geometric-
optics contribution and of the short- and long-path
surface-wave contributions (adjusted by a factor of
0.5 in amplitude and by �40° in phase). Although
Fig. 13 indicates that inclusion of the geometric-
optics contributions improves the agreement with the
Debye p � 2 results, the approximate nature of
Khare’s formula remains a substantial limitation to
more detailed analysis.

5. Discussion

All of the results in Section 4 are based on approxi-
mate calculation methods for intensity of surface
waves. As such methods produce errors in terms of

Fig. 11. Comparison of Debye-series, surface-wave, and
geometric-optics calculations for parallel polarization for p � 2
scattering (N.B., Amplitude from Khare’s formula multiplied by
factor of 0.5). Fig. 12. Diagram showing p � 2 rays for that result in a scatter-

ing angle � � 175° for a sphere with refractive index n � 1.333.

Fig. 13. Comparison of Debye-series calculations with the vector
sum of surface-wave and geometric-optics calculations for parallel
polarization for p � 2 scattering (N.B., Amplitude from Khare’s
formula multiplied by factor of 0.5 with a phase correction of �40°.)
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intensity and phase, a more accurate calculation
method is needed. Despite such errors, the results
suggest that the colored rings of the glory are due to
interference between short- and long-path surface
waves associated with p � 2 contributions.

At first sight, this explanation may seem similar to
that of van de Hulst, but it is instructive to examine
the differences between the two explanations. Using
Huygens’ principle, van de Hulst showed that the
interference pattern corresponding to the toroidal
wavefront propagating in the direction � � 180° is
defined by

I1 � �C1 �J1�u� � J2�u�� � C2 �J1�u��J2�u���2,

I2 � �C2 �J1�u� � J2�u�� � C1 �J1�u��J2�u���2,

where I1 and I2 are the intensities in the direction �
� 180° � � for perpendicular and parallel polariza-
tion respectively, C1 and C2 are proportional to the
amplitudes of the components with perpendicular
and parallel polarization, and u � 2
r sin�����. In
assessing the accuracy of van de Hulst’s method, an
immediate problem is that we do not know the values
of C1 and C2. Although van de Hulst suggested some
notional values, such as 0 � C1�C2 � �0.25, the
above equations do not yield any quantitative predic-
tions of the intensity of the glory.

Figure 14(a) shows a comparison of the Debye se-
ries for the p � 1 glory with van de Hulst’s method: in
this case, the value of C1�C2 � �0.12 has been chosen
because it reproduces the minimum for perpendicu-
lar polarization at � � 177.4°, while the value of C1
has been set to give the correct intensity at � �
180°. Figure 14(a) shows that van de Hulst’s diffrac-
tion pattern agrees closely with the Debye-series
calculations when � is near 180°, but becomes in-
creasingly inaccurate as � is reduced.

Figure 14(b) compares the Debye series for the p
� 1 glory with the calculation method based on sim-
ple interference between short- and long-path surface
waves. The latter method gives inaccurate results
when � → 180°, but it correctly reproduces the max-
ima and minima for other values of �, especially for
the dominant parallel polarization.

In essence, Fig. 14(a) shows that van de Hulst’s
diffraction pattern is not a satisfactory model for the
rings of the glory, whereas Fig. 14(b) and Fig. 8(a) act
as reminders that surface waves shed light continu-
ously as a function of �, unlike van de Hulst’s diffrac-
tion pattern that is based on � � 180° being a
preferential direction.

The fact that the Debye-series calculations predict
a glory for the p � 1 term, as well as for the p � 2
term, may be unanticipated. Figure 1 shows that
many other values of p produce almost identical color
sequences for the scattering of sunlight, although
they are much weaker than the p � 2 term. Identi-
fication of the scattering mechanisms responsible for
these “invisible” glories would be aided by a rigorous
calculation method for the intensity of surface waves.

6. Conclusions

Mie theory can be used to generate full-color simula-
tions of the atmospheric glory. However, as Mie the-
ory involves the summation of a large number of
numerical terms, it does not provide any explanation
of the scattering mechanisms causing the glory. Cal-
culations using the Debye series provide a partial
explanation by showing that p � 2 scattering (i.e.,
rays suffering one internal reflection within spherical
water droplets) are dominant in the formation of the
colored rings of the glory. Higher-order rays �p � 2�
contribute little to the colored rings but make impor-
tant contributions to the white central feature of the
glory.

This paper suggests that the colored rings of the
glory are caused by two-ray interference between
“short” and “long” path surface waves, which are gen-
erated by rays entering the droplets at diametrically
opposite points, as illustrated in Fig. 12. It is also

Fig. 14. (a) Comparison of Debye-series calculations for p � 1
scattering with calculations based on van de Hulst’s diffraction
pattern. (b) Comparison of Debye-series calculations for p � 1
scattering with calculations based on two-ray interference between
short- and long-path surface waves.
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necessary to take account of geometric “near-central”
p � 2 rays.

van de Hulst postulated that the glory is caused by
the interference pattern corresponding to the toroidal
wavefront propagating in the direction � � 180°. This
paper emphasizes that it is not necessary to invoke
� � 180° as a preferential direction because surface
waves radiate in all directions. Furthermore, van de
Hulst’s method does not accurately predict the max-
ima and minima corresponding to the rings of the
glory, whereas calculations based on interference be-
tween short- and long-path surface waves seem much
more accurate.

As this paper’s explanation of the glory does not
rely on summation of numerical terms (such as in Mie
theory or the CAM approximation), it is accessible to
nonmathematicians and, consequently, it may satisfy
the many requests for a simple physical model of the
glory.

The author would like to thank G. P. Können for
his generous advice and encouragement.
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