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A ray-theoretic account of the passage of light through a radially inhomogeneous transparent sphere has
been used to establish the existence of multiple primary rainbows for some refractive index profiles. The
existence of such additional bows is a consequence of a sufficiently attractive potential in the interior of
the drop, i.e., the refractive index gradient should be sufficiently negative there. The profiles for which
this gradient is monotonically increasing do not result in this phenomenon, but nonmonotone profiles can
do so, depending on the form of n. Sufficiently oscillatory profiles can lead to apparently singular behavior
in the deviation angle (within the geometrical optics approximation) as well as multiple rainbows. These
results also apply to systems with circular cylindrical cross sections, and may be of value in the field of
rainbow refractometry. © 2007 Optical Society of America

OCIS codes: 080.2710, 080.0080.

1. Introduction

This paper uses geometrical optics to analyze the
scattering of light by inhomogeneous spheres in
which the refractive index is a function of the radius
only. The results may be of value in the field of rain-
bow refractometry and thermometry, which are opti-
cal techniques used to measure the refractive index
(and hence the temperature) of transparent particles
(including fuel droplets), and the cross-sectional
shape of dielectric cylinders.1–18 Such techniques can
be used to determine very small spatial and time-
varying changes in refractive index, and are valuable
for analysis of the combustion of liquid hydrocarbons,
the injection of sprays in high-pressure environ-
ments, as well as the spraying�drying techniques em-
ployed in the food, agricultural and pharmaceutical
industries.9 Gradients of refractive index can be
caused when droplets undergo simultaneous heating
and evaporation in a combustion chamber, and will
be primarily radial if internal convection can be ne-
glected compared with thermal conduction.10 Similar
refractometry studies have been carried out to deter-

mine the refractive indices and radii of unclad optical
fibers.19–21 While much of the work referenced above
is based on geometrical optics, some utilize the more
sophisticated Airy and�or Lorenz–Mie theories, ex-
plicitly or implicitly,11,13–16 and most recently, gener-
alizations of the Airy theory in combination with
geometrical optics have been carried out.22,23 The
present study provides a basis for investigation of
more complex radial gradients in refractive index
than has hitherto been the case.

2. Rays in Radially Inhomogeneous Media

Using elementary differential geometry, it may be
shown that if � is the radius vector of a point on a
ray, and s is the tangent vector at that point, and
n(�) is the refractive index, then in terms of � and
� � |�|,

� � n���s � constant. (1)

This result, known as Bouguer’s formula,24 implies
that all the ray paths are plane curves, in a plane
through the origin, and that along each ray

n���� sin � � constant � K, (2)

where � is the angle between the vector � and the
tangent to the ray at that point. In a spherically
symmetric medium, elementary geometry (in terms
of the polar coordinates of a plane) indicates that
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sin � �
����

��2��� � �d��d��2
. (3)

Equations (2) and (3) imply that

d�

d�
� �

�

K
��2n2��� � K2,

whence the governing equation for ray paths in
spherically symmetric media is

� � �0 � �K�
R

	
d�

���2n2��� � K2
. (4)

In this integral the upper limit of the radial vari-
able � is the dummy variable �, where 0 
 	 
 R, R
being the radius of the sphere. The initial angle �0
corresponds to the value of � when 	 � R, namely at
the point of entry of the ray into the sphere. To derive
an expression for the total deviation D(i) undergone
by a ray after two refractions and one reflection, ini-
tially incident at angle i, that is a generalization of
the primary rainbow ray path, the procedure is as
follows. First consider ����� � 0 as in Fig. 1. By sym-
metry, arcPQ � arcQS � arcST � arcTV. As the
ray moves along the path PQ from P to Q, � is increas-
ing while � is decreasing, so d��d	 � 0. Equivalently,
if s is the arc length along the ray, d��ds � 0 and

d	�ds � 0 on this portion of the path. The � � 0 axis
is oriented parallel to the incoming ray, thus �0 � i,
the angle of incidence. The total deviation along the
path PQSTV in this case is

D�i� � 2i � 
 � 4r�i� � �, (5)

where � is the deviation due to the nonzero curvature
of the ray path. Thus � represents the excess devia-
tion over the constant refractive index case, and by
symmetry it is four times the excess deviation from P
to Q. The exact shape of the path obviously depends
on the choice for n���. It will be assumed that n��� is
continuous in the interval (O, R). To elucidate the
functional form of �, consider the point Q on the path,
corresponding to the stationary angle �̄ in the dia-
gram, i.e., where

d	

d��
�

� 0. (6)

Recall from Eq. (4) that

d�

d	
� �

K

	�	2n2�	� � K2
.

The choice of �K, where K � 0 has been made
because ���	� � 0 on the portion PQ of the arc. Thus

Fig. 1. Ray path for a single internal reflection; any point on the path is identified by its polar coordinates �	, ��.
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condition (6) occurs when (i) 	 � 0, and (ii) more
interestingly, when 	2n2�	� � K2. This provides a
natural definition of the turning point25 	̄, where
	̄ � 	��̄�; on arc PQ (or any equivalent arc) this map-
ping is invertible for a given sign of K, so we also have
a more useful form �̄ � ��	̄�. As can be seen from Fig.
1, this is the point at which a ray propagating into the
droplet is refracted away from its closest point of
entry to the center (in the case of constant n, the
interior ray path is straight of course, but 	̄ still de-
fines the point of closest approach to the origin.

It is convenient to employ a dimensionless version
of some of the above equations in what follows, scal-
ing radial distances within the sphere by the radius
R. Let � � ��R, �̄ � 	̄�R, where 0 
 �̄ 
 � 
 1, and
K̄ � K�R. At the point of entry P, the angle
� � r�i�, the angle of refraction [see Eq. (2)]. The
value of K̄ determines the subsequent path of any
incident ray. Since n��� is discontinuous at � � 1, it
follows that

K� �i� � lim
�→1�

��n���	sin r�i� � lim
�→1�

� sin i � sin i,

but when � � �̄,

K� � �̄n��̄�sin����̄�	 � �̄n��̄�sin�
�2	 � �̄n��̄�,

so that in principle �̄ may be determined for a given
refractive index profile from the result

K̄ � �̄n��̄� � sin i. (7)

Notice also that in general the solution �̄ will not be
unique, but in practice it should be straightforward to
identify the physically significant one. From Eq. (4)
for � � �̄, in dimensionless terms

�̄ � i � �K��
1

� d�

���2n2��� � K2
� K� �

�

1
d�

���2n�2��� � K̄2

� K� I��̄, i�, (8)

where n� ��� � n���. For any convex quadrilateral

� � �
 � 2�r � �̄ � i�, (9)

(and so � � 0 when n � constant.) For the total path
PQSTV, � � 2�, from which it follows that for
n��r� � 0 the total deviation for a primary bow is, from
Eq. (5)

D�i� � 2i � 
 � 4K��
�

1
d�

���2n�2��� � K̄2
. (10)

This result reduces to the known result for n �
constant. Clearly, the integral in Eq. (10) is improper
at the lower limit. This corresponds of course to the
definition of �̄, the value of � at which ����� � 0; in
practice, the integral exists for reasonable choices of
n� ���. In the case for which n� ���� � 0, the curvature is
away from the center, i.e., in the clockwise sense this
time, so Eq. (5) still applies, but now � is defined as

� � 
 � 2�r � �̄ � i�. (9�)

3. Specific Refractive Index Profile

A specific monotonically decreasing profile for n� ���
will be chosen because it offers reasonable analytic
tractability for the perturbation analysis in Section 4
and because it readily illustrates the double rainbow
phenomenon. The choice of n� ��� was made because
the gradient n� ���� is not constant, thereby allowing
for the possibility of subtle features that may not be
present in a linear profile. While it may be argued
that a linear profile is simpler to investigate, this is
not in fact the case: The latter contains a quartic term
in the radicand of the integral and results in elliptic
integrals that, analytically at least, provide little in-
sight into the physics of the problem; furthermore for
this profile �̄ is not unique. The equation for �̄ in this
case is admittedly only a quadratic, and it is physi-
cally obvious which root to take, but this lends a
minor but additional complication to a less general
and yet more complex case. Furthermore since any
smooth profile can be can be reasonably approxi-
mated by a linear Taylor polynomial for a sufficiently
small inhomogeneity, the choice of n� ��� below con-
tains the linear profile as a special case. This idea is
used in the perturbation analysis below: although �̄
is known exactly for this refractive index profile it is
nonlinear in “sin i”, and a linearization of �̄ about
its value for n0 for a homogeneous sphere is very
useful in evaluating the integrals below. The choice
for n� ��� is subject to the boundary conditions n� �0�
� n0 and n� �1� � n1, where n0 � n1. This determines
the parameters a���n0 � n1��n0n1	 and b��n0

�1� in
the chosen profile

n� ��� � �a� � b��1 �
n0n1

�n0 � n1�� � n1
. (11)

The expression for the minimum impact parameter
�̄�i� is found by solving Eq. (7) to give

�̄ �
n1 sin i

n0n1 � �n0 � n1�sin i . (12)

Because the numerator is increasing and the denom-
inator is decreasing with i, it follows from Eq. (12)
that �̄ is an increasing function of i on �0, 
�2�. Now
the integral in Eq. (10) reduces to

I��̄, i� ��
�

1
�a� � b�d�

���2 � K̄2�a� � b�2
� aIA � bIB, (13)
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where IA ��
�

1
d�

�C�2 � B� � A
, (14)

IB ��
�

1
d�

��C�2 � B� � A
, (15)

C � 1 � a2K̄2 � 
1 � �n0 � n1

n0n1
�2

sin2 i
� 0,

B � �2abK̄2 � �2�n0 � n1

n0n1
�sin2 i,

A � �b2K̄2.

The positivity of C follows from the fact that n0 � n1
� n0n1 always for n1 � 1. The above integrals are
standard forms, so Eq. (13) can be recast into I�1, i� �

I��̄, i�, where26

I��, i� �
a ln�2�C�C�2 � B� � A� � 2C� � B	

�C

�
b

��A
arcsin

2A � B�

��B2 � 4AC
. (16)

4. Perturbation Analysis

To illustrate the effects of slight nonhomogeneity in
n��� the profile parameter a will be considered small
and equal to �, the expansion parameter in what
follows. [This forces n1 � 5�5� � 3��1, but this pre-
sents no difficulty because n1 � 1 provided � 
 0.4.]
The integral (14) will be expanded in powers of � and
inserted into Eq. (10) for D(i), retaining only terms up
to O��� in both individual expansions and the final
result. Interestingly, terms of O��1�2�, O��� and O��3�2�
arise, but the terms O��1�2� vanish identically. Up to
O���, Eq. (14) is

I��̄, i� ��
�

1


a �
b
�
� 1

��2 � K̄2b2
�

2��bK̄ 2

��2 � K̄ 2b2�3�2�d�

� I1 � I2 � I3 � I4, (17)

where the integrals Ik, k � 1, 2, 3, 4 for now will
remain indefinite. They are26

I1 � a� d�

��2 � K̄2b2
� a ln�� � ��2 � K̄2b2�;

I2 � b� d�

���2 � K̄2b2
� �

1

K�
arcsin
K� b

� 
;

I3 � 2�abK̄2� �d�

��2 � K̄ 2b2�3�2 � �
2�abK̄ 2

��2 � K̄2b2
;

I4 � 2�b2K̄2� d�

��2 � K̄ 2b2�3�2 � �
2��

��2 � K̄2b2
.

Also Eq. (7) implies that

�̄ � ���̄ � b�sin i, i.e., �̄ � b sin i�1 � � sin i� � O��2�.
(18)

The expression ��2 � K̄2b2�1�2 appears in various ways
in the above integrals. It is readily verified that
��2 � K̄2b2�1�2 � �2b�1�2 sin3�2 i � O��3�2�. After some
algebra the definite integrals are as follows:

�I1	
�̄

1 � � ln
1 � ��2 � K̄2b2�1�2

b sin i 
� O��3�2�;

�I2	
�̄

1 � �
1

K�
�arcsin�K� b� �




2 � �2� sin i�1�2�� O��3�2�;

�I3	
�̄

1 � O��3�2�;

�I4	
�̄

1 � 
 2�

sin i
1�2

�
2�

�1 � K̄2b2�1�2 � O��3�2�.

These results are then substituted into Eq. (10),
resulting in (to O���)

D�i� � 2i � 
 � 4K��� ln
1��1 � K̄ 2b2�1�2

b sin i 

�

1

K�
�arcsin�K� b� �




2 � �2� sin i�1�2�� 
 2�

sin i
1�2

�
2�

�1 � K̄ 2b2�1�2�� O��3�2�

� 2i � 
 � 4 arcsin�K� b� � 4�K�

��ln
1 � �1 � K̄ 2b2�1�2

b sin i 
�
2

�1 � K̄ 2b 2�1�2�
� 2i � 
 � 4 arcsin�b sin i� � 4� sin i

��ln
1 � �1 � b2 sin2 i�1�2

b sin i 
�
2

�1 � b2 sin2 i�1�2�.

(18a)

� Dh�i� � �F�i�,

where F�i� � 4 sin i�ln
1 � �1 � b2 sin2 i�1�2

b sin i 

�

2

�1 � b2 sin2 i�1�2�,

and Dh�i� is the deviation for the homogeneous sphere
(this follows because b � n0

�1), and �F�i� is the addi-
tional deviation, to O���, owing to the nonhomo-
geneous refractive index. To determine where an
extremum of D(i) occurs (if it does) relative to the
homogeneous case (occurring at i � ic, say), let us use
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first-degree Taylor polynomials in the following man-
ner: clearly, since from Eq. (18a), it follows that
D��i� � Dh��i� � �F��i�. Near i � ic, i � ic � �, say (with
|�| small compared to ic), F�i� � F�ic� � �F��ic�. Then
D��i� � 0 � �Dh��ic� � �F��ic� to first order in small
quantities �, �. Since a necessary condition for the
existence of extrema in D(i) is D��i� � 0, it follows that

�Dh��ic� � ��F��ic� � �F ��ic�	 � 0, or

� � �
�F��ic�

Dh��ic� � �F ��ic�
� �

�F��ic�
Dh��ic�

� O��2�. (19)

Elementary ray theory shows that Dh��ic� � 0, and
F��ic� � 0 for n0 � 5�3 (as is readily verified from Fig.
2), it follows that � � 0 in the vicinity of ic, i.e., the
extremum occurs at slightly higher values of i than
compared with the homogeneous case. Indeed, from
the general shape of F(i) in Fig. 2 it may be seen that
F�i� � 0 for i � �0, ��, where � � 0.429 for n0 �
5�3 and F�i� � 0 for i � ��, 
�2	. This is consistent
with the fact that compared with the homogeneous
sphere, according to Fig. 3, there is now a maximum
of D(i) in �0, ��, and the minimum of D(i) in ��, 
�2	
is lower, i.e., D�imin� � Dh�ic�. The reason for this is
that initially, F(i) increases faster than Dh�i� de-
creases, so D(i) also increases, decreasing shortly
thereafter (according to Fig. 3, at i � 16.3°). In Fig. 2
the solid curve [F(i)] is drawn for n0 � 5�3 while
the dashed curve [F1(i)] is for n0 � 2.5. In Fig. 3,
� � 0.25 and n0 � 5�3, but even for this relatively
large nonuniformity the agreement between the ex-
act TotD(i) and the linear approximation given by Eq.
(18a) is reasonable for angles of incidence less than
approximately 30°. The disparity between these two
graphs shrinks (as one would expect) as � tends to
zero.

Note that the above profile for n� ��� was chosen for
analytic convenience; it also has the advantage that a
unique value of �̄ could be specified for numerical
studies. In general this is not the case. However, as
noted earlier, to the extent that any profile can be
approximated (sometimes quite accurately) by a lin-
ear Taylor polynomial, this result is general in that it
holds for any small functional deviation from a con-
stant profile n0.

5. Existence of Multiple Rainbows of a Given Order

Earlier work by Brockman and Alexopoulos27 consid-
ered ray optics for particles with refractive indices in
the form of a power law; in dimensional notation
n�r� � n�R��r�R�m. This functional form allows for two
very unphysical situations: n�0� � 0 when m � 0 and
n�0� → � as � → 0 when m � 0. If, however, a con-
stant index sphere of radius a � R were smoothly
matched to this type of profile for a � � � R, then
such a composite profile might prove useful. Even
without modification it represents two extreme cases
of very weak and very strong central refraction re-
spectively. For the simple power law index, Eq. (10)
for D(i) is reducible to a generalization of that for
constant n. Unfortunately the model of Brockman
et al. does not allow for the possibility of more than
one rainbow of a given order since D=(i) still possesses
a unique zero ic.

However, some insights about when this phenome-
non may occur can be gained by examining the quan-
tity ���� � �n� ��� ��K� � sin i� in Eq. (10). The turning
point �̄ for a ray with a given angle of incidence i is
given implicitly by the relation ���̄� � sin i. Figure 4

Fig. 2. F(i) defined by Eq. (18a) is the incident angular component
of the additional deviation incurred for the inhomogeneous sphere
over that for the homogeneous one [see Eq. (18)], and is plotted for
n0 � 5�3. F1(i) is for n0 � 2.5.

Fig. 3. Graphs of (i) the exact ray deviation TotD(i) found from
Eq. (10) for the profile n� ��� � �a� � b��1 with a � � ��0.25 here�
and n0 � 5�3, corresponding to n1 � 5��5� � 3�; (ii) the deviation
for the homogeneous sphere Dh(i) for n� ��� � n0 � 5�3; (iii) the
additional deviation �F�i�, due to the inhomogeneity [see Eqs. (18)
and (18a)]; (iv) the linear approximation to the deviation Dh�i�
� �F�i�, as calculated from Eq. (18).
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shows two refractive index profiles: �1��� � �n�1��� �
��5 � 4�� � 0.5�2	�3 and �2��� � �n�2��� � 4��1 �
�� � 0.5�2	�3. The first corresponds to the refractive
index increasing from 4�3 at � � 0 to a maximum of
5�3 at � � 0.5 and then decreasing back to 4�3 at the
drop surface, � � 1. The second profile corresponds to
the refractive index decreasing from 5�3 at � � 0 to a
minimum of 4�3 at � � 0.5 and then increasing back
to 5�3 at the drop surface, � � 1. The D(i) graphs
corresponding to these two symmetric refractive index
profiles exhibit interesting differences (see Fig. 5): For
n�1 there is a single minimum near i � 13.8° of arc,
whereas for n�2 there is a maximum near i � 8.0° and
a minimum near i � 65.3°—a double primary rain-
bow! Clearly the presence of an attractive index pro-
file n2 in the central region is the physical reason for
this. However, despite the different concavities of
both the n� and the 	 profiles, there is nothing distinc-
tive in these graphs to indicate this contrasting be-
havior. Perhaps this is not surprising given that it is
a weighted integral of the reciprocal square root of
�2 � sin2 i that is contributing to D(i). It is worth
noting that similar results occur for the linear profiles
n � �4 � ���3 (minimum only) and n � �5 � ���3
(maximum and minimum).

Nevertheless, further insight may be gained from
the more complicated profile n� ��� � �5 � sin�6
��	�3.
This and the corresponding ���� graph are shown in
Fig. 6. Recall that the turning point �̄ is defined by
the equation ���̄� � sin i, so the vertical axis is syn-
onymous with sin i as far as �̄ is concerned, and
therefore it is only of interest to consider 0 
 � 
 1.
As the angle of incidence i increases from zero to 90°,
the ray will move into the sphere until it encounters
the turning point �̄ and proceed no further. The axial
ray (i � 0°) passes through the center and for
q � 1, �̄ is obviously zero. As i increases, so too does
�̄, changing slowly as a function of i at first, and more
rapidly later, because the derivative of 	, as drawn is
decreasing until the point of inflection is reached.
However, at the value of sin i corresponding to the

relative minimum of ���̄�, �̄ jumps discontinuously on
this graph from approximately 0.39 to about 0.57 and
then climbs to approximately 0.64 when i � 90°. If
instead of starting at i equal to zero we had reversed
the process, starting with a tangentially incident ray
�sin i � 1�, the track of �̄ is reversible. At the relative
minimum of ���̄�, this being the coalescence of two
turning points (the inner one being inaccessible to an
incoming ray), we might expect some correspondingly
aberrant behavior in D(i), and this does indeed occur
(see Fig. 7). The spiked behavior evident in this figure
is therefore associated with the discontinuity in the
turning point �̄�i�.

Another feature is noteworthy. It appears that for at
least monotonically decreasing n(r) profiles, the quan-
tity

L�i� � K��
�

1
d�

���2n�2��� � K̄2
(20)

possesses a point of inflection, while for monotoni-
cally increasing profiles it does not, exhibiting only a
graph with upward concavity. Furthermore it is ap-
parent from Fig. 8 (drawn for a linearly decreasing
refractive index profile) that the derivative L��i� is

Fig. 4. Graphs of symmetric refractive index profiles.

Fig. 5. Graphs of D(i) for two symmetric refractive index profiles
�1��� and �2���.
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negative in the interval of interest. These are obvi-
ously necessary conditions for the existence of double
extrema in the graph of D(i), since the remaining
terms are linear in i. This feature is also present for
the parabolic profile n�r� � 4�1 � �r � 0.5�2	�3, so it
appears that the double bow exists provided the pro-
file is sufficiently attractive in the deep interior of the
drop.

Nevertheless, these general criteria on L(i) are still
insufficient to translate into conditions on n(r). In the

graphs below for n��� � �5 � ���3 (Fig. 8), D(i) is the
total deviation [Eq. (10)] and Dl(i) is just the linear
part of D(i), namely Dl�i� � 2i.

Fig. 6. (a) Variation of refractive index n��� as a function of the
normalized radius � of the sphere. (b) Variation of singular point
���� as a function of the normalized radius � of the sphere.

Fig. 7. Graph of D(i) for n� ��� � �5 � sin�6
��	�3. Note the multiple
extrema and also the apparent singular behavior near i � arcsin
0.76 � 49.5°, corresponding to the smallest minimum of 	(�) in Fig. 6.

Fig. 8. Graphs of (i) D(i) as given by Eq. (10), (ii) the integral term
L(i) as defined by Eq. (24), and (iii) the linear part of D(i), namely
Dl�i� � 2i, where D�i� � Dl�i� � 4L�i� � 
.
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6. Conclusion

A ray-theoretic account of the passage of light through
a radially inhomogeneous transparent sphere has
been used to establish the existence of multiple ��2�
primary rainbows (and in principle, higher-order
bows) for some refractive index profiles. The existence
of such additional bows is a consequence of a suffi-
ciently attractive potential in the interior of the drop,
i.e., the refractive index gradient should be sufficiently
negative there. Further work is required to quantify
the adjective “sufficiently” in the previous sentence.
The profiles for which this gradient is monotonically
increasing do not result in this phenomenon, but non-
monotone profiles can do so, depending on the form of
n. Indeed, sufficiently oscillatory profiles can lead to
apparently singular behavior in the deviation angle
(within the geometrical optics approximation) as well
as to multiple rainbows.
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