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Rainbows, coronas and glories are caused by the scattering of sunlight from water droplets in the atmo-
sphere. Although these optical phenomena are seen fairly frequently, even scientifically minded people
sometimes struggle to provide explanations for their formation. This paper offers explanations of these
phenomena based on numerical computations of the scattering of a 5 fs pulse of red light by a spherical
droplet of water. The results reveal the intricate details of the various scattering mechanisms, some of
which are essentially undetectable except in the time domain. © 2011 Optical Society of America
OCIS codes: 010.1290, 240.6690, 290.4020, 320.2250.

1. Introduction

The apparently trivial process of scattering of sun-
light by spherical drops of water can produce a wide
range of optical phenomena including beautifully
colored rainbows, coronas and glories. Careful obser-
vations of such phenomena can provide information
about the size of the water droplets, but reveal no
information about the relative importance of various
scattering processes, such as diffraction, reflection,
transmission, surface waves, etc.

Mie theory offers a rigorous solution to the prob-
lem of scattering of light by a homogeneous spherical
particle, as in Fig. 1, which shows the results of Mie
calculations for scattering of red light by a water dro-
plet of radius r ¼ 10 μm. The intricate ripples on the
curves of intensity in Fig. 1 indicate that scattering,
even in the simple case of a spherical droplet, is a
complicated process. Although “diffraction” is readily
identifiable as the cause of scattering in the near-
forward direction (e.g., for θ < 5°), it is not easy to
explain the other features of Fig. 1.

Fortunately, calculations using the Debye series
[1–3] can give us greater understanding of the scat-
tering mechanisms, as shown in Fig. 2. The curves
labeled p ¼ 0 show scattering caused by diffraction
and by reflection from the exterior of the spherical
particle: this combination of different scattering
processes for p ¼ 0 is a computational necessity to

ensure convergence of the Debye series. The p ¼ 1
curves show scattering involving direct transmission
through the spherical particle (i.e., with no internal
reflections). The p ¼ 2 curves show scattering invol-
ving one internal reflection, whereas the p ¼ 3
curves involve two internal reflections, and so on.

The p ¼ 0 curves in Fig. 2 confirm that near-
forward scattering is due to diffraction. The
p ¼ 1 curves are dominant when 10° < θ < 75°—
suggesting that the ripple structure in this zone
shown in Fig. 1 is caused by interference between
the p ¼ 0 and p ¼ 1 components. This interpretation
is confirmed by the fact that the maximum/minimum
ratio of the ripples in Fig. 1 is greatest when θ ≈ 75°,
which coincides with the crossing point of the p ¼ 0
and p ¼ 1 curves for perpendicular polarization in
Fig. 2. The maximum of the p ¼ 2 curve for perpen-
dicular polarization at θ ≈ 142° corresponds to the
primary rainbow, while the maximum of p ¼ 3 curve
at θ ≈ 125° corresponds to the secondary rainbow.
Both the p ¼ 2 and p ¼ 3 curves are dominated by
perpendicular polarization. Having seen the Debye
series results in Fig. 2, we can now return to Fig. 1
and, with the benefit of hindsight, recognize that
p ¼ 2 and p ¼ 3 scattering is responsible for most of
the scattering shown for 120° < θ < 180°.

Although the Debye series calculations can iden-
tify scattering contributions of order p, they cannot
distinguish between different scattering mechan-
isms within a given value of p. For example, it has
already been noted that the Debye p ¼ 0 term in-
cludes diffraction and external reflection.
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This paper analyzes scattering in the time domain
to understand the relative contributions made by
the various scattering processes. Section 2 employs
geometrical optics to provide an introduction to scat-
tering by a spherical droplet of water in the time
domain. Section 3 uses Mie and Debye series calcu-
lations to determine the impulse response at a single
scattering angle θ ¼ 150° when a water droplet is
illuminated by a 5-femtosecond pulse of red light.
Section 4 extends this analysis to show how the
impulse response varies with scattering angle θ for
Debye series p ¼ 0 through p ¼ 3 terms, thus identi-
fying the contributions made by various scattering
mechanisms.

2. Geometrical Optics

Geometrical optics is appealing because it offers a
simple and intuitive explanation for some optical
phenomena, such as rainbows. However, it fails to
deal with diffraction, surface waves and, indeed, with
interference phenomena. The latter failing can be
partially addressed by taking account of the relative
amplitudes and phases of rays that emerge from the
spherical particle at a given scattering angle θ.

Geometrical optics cannot match the accuracy of
Mie theory or the Debye series. The greatest limita-
tion of geometrical optics is that it is quantitatively
valid only for large particles. Nevertheless, ray tra-
cing is a useful starting point for investigations of

scattering mechanisms. Figure 3 shows a sphere
illuminated by a beam of light, which can be consid-
ered as an infinite set of parallel rays arriving from
the left of the diagram. Selected geometric rays are
shown in Fig. 3 because they result in θ ¼ 150° for
p ≤ 5 (i.e., for rays suffering four or fewer internal
reflections). Each of these rays is defined by p and
an impact parameter b. Note that b ¼ 0 indicates a
“central” ray aimed at the center of the sphere, while
b ¼ �1 indicates “edge” rays that are tangential to
the top (or bottom) of the sphere. Although the indi-
vidual rays in Fig. 3 all leave the sphere at θ ¼ 150°,
they take very different paths—and consequently
have varying path lengths. The time delay τ (mea-
sured between the dashed reference lines represent-
ing the entrance and exit planes) can be calculated
using the following equation:

τ ¼ 2r=c½n0½1 −
pð1 − b2Þ� þ n1p cos½arcsinðbn0=n1Þ��;

ð1Þ

where:

b is the impact parameter;
r is the radius of the sphere;
n1 is the refractive index of the sphere;
n0 is the refractive index of the medium;
c is the speed of light in a vacuum.

Rays A-F shown in Fig. 3 are just a few of the geo-
metric rays that result in θ ¼ 150°. Many more rays
for higher values of p also result in θ ¼ 150° (some
of which are listed in Table 1), but it is reasonable
to assume that most of these higher order rays will
produce relatively weak scattering.

3. Impulse Response at θ � 150°

Table 1 suggests that, in principle, the individual
ray paths shown in Fig. 3 could be identified by
transmitting a short pulse of light toward the sphe-
rical particle and by measuring the time of arrival
of the pulses as received by a detector located at
θ ¼ 150°. In practice, it would be difficult to perform

Fig. 1. (Color online) Results of Mie theory calculations for
scattering of red light (650nm) by a spherical droplet of water
of radius r ¼ 10 μm. The refractive index of the sphere n1 ¼
1:33257þ i1:67E − 08, while the refractive index of the medium
n0 ¼ 1.

Fig. 2. (Color online) As Fig. 1, except for the use of Debye series
calculations. The symbol ⊥ denotes perpendicular polarization,
while the symbol == denotes parallel polarization.

Fig. 3. (Color online) Geometric rays for p ≤ 5 that contribute to
scattering at θ ¼ 150° assuming that the refractive index of sphere
n1 ¼ 1:33257 and the refractive index of medium n0 ¼ 1.
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such an experiment, but numerous authors have per-
formed numerical computations using Mie theory
to determine the impulse response of a spherical
particle at a given value of θ. [4–13] Their results
have potential applications for particle-sizing and
determination of refractive index, but the specific
aim of this paper is to use such techniques to obtain
greater understanding of the various scattering
mechanisms.

All of the results in this paper have been generated
using the MiePlot computer program which can be
downloaded free of charge from www.philiplaven
.com/mieplot.htm. The MiePlot program first per-
forms a fast Fourier transform (FFT) on the pulse
shape in the time domain to determine the spectrum
of the pulse, which is then multiplied by the results
of scattering calculations for a range of scattering

angles θ at a number of discrete wavelengths across
the bandwidth of the pulse. The results for a given
value of θ as a function of wavelength are then sub-
jected to another FFT so as to produce the time
domain impulse response for that value of θ. Figure 4
shows the calculated impulse response for scattering
angle θ ¼ 150° for the following conditions:

• Nominal wavelength: λ ¼ 650nm;
• Pulse duration: t0 ¼ 5 fs (half-amplitude dura-

tion with pulse shape defined by amplitude E ¼
0:5½1þ cosðπt=t0Þ� for −t0 < t < t0);

• Pulse bandwidth: 564nm–767nm at −3dB
points; but the bandwidth of the pulse has been trun-
cated at −40dB points (404nm–1664nm);

• Sphere radius r ¼ 10 μm;
• Refractive index of sphere: n1 ¼ 1:33257þ

i1:67E − 08 at nominal wavelength λ ¼ 650nm (N.B.
The real part of the refractive index of water is 1.344
at 404nm and 1.313 at 1664nm, while the imaginary
part is negligible for the current purposes.);

• Refractive index of medium: n0 ¼ 1.

Figures 4(a) and 4(b) have been calculated using
Mie theory, while Fig. 4(c) has been calculated using
the Debye series so as to separate scattering contri-
butions for various values of p. Figures 4(b) and 4(c)
have been calculated using a fixed value of refractive
index of the sphere across the bandwidth of the pulse
(i.e., n1 ¼ 1:33257þ i1:67E − 08).

The effects of dispersion can be seen by comparing
Figs. 4(a) and 4(b). The p ¼ 0 pulse at τ ≈ 2 fs is due to
reflection from the exterior of the sphere, correspond-
ing to ray A in Fig. 3. Note that the p ¼ 0 pulses have
essentially identical shapes in Figs. 4(a) and 4(b),
thus indicating that dispersion has little or no effect

Table 1. Propagation Parameters for Geometric Rays
Resulting in θ � 150°, Assuming a Sphere of Radius
r � 10 μm, Refractive Index of Sphere n1 � 1:33257

and Refractive Index of Medium n0 � 1

Ray p b τ (fs)

A 0 −0:2588 2.3
B 2 0.5351 173.1
C 2 0.9862 175.1
D 4 0.1307 354.2
E 5 0.6475 404.1
F 5 −0:4686 423.6
G 6 0.9198 426.2
H 6 −0:7876 455.6
I 6 0.0747 532.4
J 7 0.4249 595.7
K 7 0.3056 608.5
L 8 0.6562 634.9
M 8 0.5608 656.2

Fig. 4. (Color online) Impulse response of a water droplet of radius r ¼ 10 μm for a 5 fs pulse of red light (nominal wavelength λ ¼ 650nm)
at scattering angle θ ¼ 150°. Graph (a) takes account of dispersion (i.e., due to the varying refractive index n1 of the sphere across
the bandwidth of the pulse). Graph (b) assumes that the refractive index of the sphere n1 ¼ 1:33257þ i1:67E − 08 and that this does
not change with wavelength. Graph (c) uses Debye series calculations to identify scattering caused by specific values of p. The letters
A to H correspond to the time delays τ specified in Table 1.
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on these pulses. But, for p > 0, the pulses in Fig. 4(a)
are broadened and slightly shifted in time relative
to Fig. 4(b). For example, the p ¼ 4 pulses have very
different shapes and, furthermore, show maximum
intensity at τ ¼ 359:1 fs in Fig. 4(a) and τ ¼ 354:2 fs
in Fig. 4(b).

Although the Figs. 4(b) and 4(c) incorrectly assume
that the refractive index of the sphere n1 is indepen-
dent of wavelength, several of the pulses in Fig. 4(c)
coincide with the timings from Table 1, as indicated
by the dotted vertical lines marked A to H. This close
agreement between the values of τ given by the var-
ious independent methods of calculation (i.e., Mie,
Debye and ray-tracing) gives considerable confidence
in the results.

However, it is also important to acknowledge that
some of the scattered pulses shown for θ ¼ 150° in
Fig. 4(c) were not predicted by the ray-tracing exer-
cise in Fig. 3—for example, there is a p ¼ 1 pulse at
τ ≈ 165:2 fs, a p ¼ 2 pulse at τ ≈ 210 fs, a p ¼ 3 pulse
at τ ≈ 220 fs, and a p ¼ 5 pulse at τ ≈ 416 fs. What
causes these “nongeometrical” pulses?

4. Impulse Response as a Function of θ

It is clear that examining the impulse response at a
particular scattering angle θ can give valuable infor-
mation about the scattering processes at that value
of θ. However, even more information is revealed if
the impulse response is displayed as a function of θ,
as in Fig. 5, which shows the impulse responses from
θ ¼ 0° to θ ¼ 180° in 0:2° steps. The intensity of the
scattered pulses is coded according to the false-color

scale shown above the diagram. The maximum in-
tensity occurs for p ¼ 0 at θ ¼ 0° (forward scattering)
and τ ≈ 67 fs. Note that the time reference (τ ¼ 0) cor-
responds to p ¼ 0 reflection from the exterior of the
sphere at θ ¼ 180°.

Figure 5 has been calculated using Mie theory, but
Debye series calculations have been used to identify
the order p of the scattering processes. To facilitate
comparisons with the results of ray tracing, Fig. 5
and all of the subsequent calculations reported
in this paper assume that the refractive index of
water n1 ¼ 1:33257þ i1:67E − 08 does not vary with
wavelength.

A. p ¼ 0 Scattering

Figure 6(a) shows the impulse response calculated
using the Debye series for p ¼ 0 (external reflection
and diffraction). The impulse response in Fig. 6(a)
can be considered as the sum of the impulse re-
sponses shown in Figs. 6(b) and 6(c). Figure 6(b)
shows the impulse response due solely to reflection
from the exterior of the sphere—as shown by the
parametric curve marked with the values of the
impact parameter b obtained from ray-tracing calcu-
lations. In this case, a ray with b ¼ 0 results in
θ ¼ 180° and τ ¼ 0, while a ray with b ¼ 1 results
in θ ¼ 0° and τ ¼ 66:7 fs. The latter value of τ corre-
sponds to the propagation delay (2r=c) that would be
experienced by a ray with θ ¼ 0° in the absence of the
sphere. Note that the false colors in Fig. 6(b) are iden-
tical to those in the comparable parts of Fig. 6(a)—
except when θ < 10° where Fig. 6(a) is dominated
by the contributions shown in Fig. 6(c). This close
agreement shows that calculations using geometrical
optics can give accurate results in terms of the inten-
sity of external reflection. Similarly, the time delays
predicted by geometrical optics preciselymatch those
predicted by the Debye series calculations. The
inverted v-shape centered on τ ¼ 66:7 fs in Fig. 6(c)
represents diffraction. [14,15] The process of diffrac-
tion is usually thought of as a wave phenomenon, but
this inverted v-shape suggests that diffraction could
be considered as a two-ray interference pattern as
proposed by Keller in his geometrical theory of dif-
fraction [16,17]. For monochromatic light, interfer-
ence between the two propagation paths indicated
by the inverted v-shape in Fig. 6(c) results in a series
of maxima and minima as a function of θ, thus pro-
ducing a corona, which is a system of circular rings
centered on θ ¼ 0°. Scattering of white light produces
the atmospheric corona, which appears as colored
rings surrounding the sun or the moon. As diffraction
is essentially independent of the refractive index n1,
the angular size of the corona is determined solely by
the size of the water droplets.

B. p ¼ 1 Scattering

Figure 7 compares the results of Debye series and
geometrical optics calculations for p ¼ 1 scattering
as a function of θ for n1 ¼ 1:33257. The results
are identical when θ is small, but the intensity of

Fig. 5. (Color online) Mie theory calculations of the impulse
response of a water droplet of radius r ¼ 10 μm for a 5 fs pulse
of red light (nominal wavelength λ ¼ 650nm) as a function of scat-
tering angle θ. The refractive index of the sphere n1 ¼ 1:33257þ
i1:67E − 08 and the refractive index of the medium n0 ¼ 1 are
assumed to be constant across the bandwidth of the pulse. The
intensity of the scattered pulses is coded according to the false-
color scale shown above the diagram.
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geometrical optics contribution falls to zero at
θc ¼ 180° − 2sin−1½1=n1� ≈ 82:75°. Although geometri-
cal optics makes no contribution to p ¼ 1 scattering
when θ > θc, the Debye results include the contribu-
tions of surface waves, thus showing no discontinuity
in the region around θc. Surface waves shed radiation
continuously as they propagate around the surface of
the sphere. As Fig. 7 has a logarithmic vertical axis,
the fact that Debye results are almost straight lines
when 100° < θ < 150° implies that the attenuation of
surface waves is roughly proportional to the angular
distance traveled by the surface waves. In general,
contributions from surface waves can generally be
identified by (a) straight line portions of graphs of
intensity as a function of scattering angle (when a
logarithmic intensity scale is used) and by (b) the
dominance of parallel polarization. The series of
maxima and minima as θ approaches 180° in Fig. 7
corresponds to the p ¼ 1 glory, which can be under-
stood more easily in the time domain.

Figure 8(a) shows the impulse response calculated
using the Debye series for p ¼ 1 (transmission
through the sphere with no internal reflections).
Again, the time delays calculated by ray-tracing
have been superimposed on the curves: in this case,
a ray with b ¼ 0 gives θ ¼ 0° and τ ¼ 88:8 fs, while a
ray with b ¼ 1 gives θ ¼ θc ≈ 82:75° and τ ¼ 125:4 fs.
Figure 8(b) shows a comparable diagram calcu-
lated using geometrical optics. The lower portion of
Fig. 8(b) is black, emphasizing that, as noted above,
no p ¼ 1 geometric rays result in θ > 82:75°. The si-
milarity of the colors for θ < 70° in Figs. 8(a) and 8(b)
indicates that the intensity of scattering predicted by
geometrical optics is close to that predicted by the
rigorous Debye series calculations—but Fig. 8(b) also
shows that the intensity of the geometrical optics
contribution decreases very rapidly as θ approaches
82:75°.

Figure 8(a) shows significant p ¼ 1 scattering
for θ > 82:75° and τ > 125:4 fs (as highlighted by
the dashed lines). The colors in Fig. 8(a) show that
intensity of this scattering decreases smoothly as θ
is increased with the notable exception of a slight
increase in intensity when θ > 175°. The v-shaped
pattern centered on τ ≈ 183 fs in Fig. 8(a) shows two
p ¼ 1 pulses as θ → 180°. Taking the example of
θ ¼ 150°, Fig. 8(a) indicates a pulse at τ ≈ 165 fs with
another much weaker pulse at τ ≈ 201 fs. We have al-
ready seen evidence of the former pulse in Fig. 4(c),
which shows a p ¼ 1 pulse at τ ≈ 165:2 fs, but the
latter pulse is too weak to be seen in Fig. 4(c) because
it is obscured by other pulses.

Figure 9 attempts to identify the propagation
paths corresponding to these two additional p ¼ 1
pulses. The top diagram in Fig. 9 shows an incident

Fig. 6. (Color online) p ¼ 0 impulse response as a function of scattering angle θ calculated using (a) Debye series calculations, (b) geome-
trical optics calculations for reflection from exterior of the droplet, and (c) the diffraction term. Note that (a) shows the result of combining
(b) and (c).

Fig. 7. (Color online) Intensity of p ¼ 1 scattering as a function of
scattering angle θ, calculated using Debye series and geometrical
optics. The symbol⊥ denotes perpendicular polarization, while the
symbol == denotes parallel polarization.
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ray arriving from the left of the diagram with impact
parameter b ¼ 1. This ray is refracted into the sphere
at point A and then travels to point B generating sur-
face waves which travel along an arc of 67:3° from B
to C on the circumference of the sphere, resulting in
θ ¼ 150°. The bottom diagram shows an incident ray
with impact parameter b ¼ −1, which is refracted at
point D and travels within the sphere to point E gen-
erating surface waves along a circular arc of 127:3°
from E to F. In this case, the total counterclockwise
deviation is 210°, which is equivalent to the required
value of θ ¼ 150°. The two propagation paths shown
in Fig. 9 can be described respectively as “short-path”
and “long-path” p ¼ 1 surface waves. In general,
when θ ¼ 180° − δ, the long-path surface wave tra-
vels an angular distance along the circumference of
the sphere that is 2δ longer than the short-path
surface wave—e.g., as shown in Fig. 9 for θ ¼ 150°,

corresponding to δ ¼ 30°, the difference in arc
lengths is 60°.

Assuming that surface waves propagate at the
speed of light c, the calculated time delays for these
two propagation paths shown in Fig. 9 are τ ¼
164:5 fs and τ ¼ 199:4 fs. Detailed analysis [18] of
the propagation speed of surface waves indicates
that, for the conditions applicable in this paper, sur-
face waves can be considered to travel around the
surface of the spherical particle at about 0:98c, in line
with earlier theoretical studies [19]. Taking account
of this factor means that the two pulses shown in
Fig. 9 should occur at τ ¼ 165:3 fs and τ ¼ 200:9 fs,
which can be compared with the values of τ ≈ 165:2 fs
and τ ≈ 200:7 fs obtained from the Debye series calcu-
lations in the time domain. This excellent agreement
provides compelling evidence of the contributions
made by surface waves to p ¼ 1 scattering [3,20].

Armed with this insight into the propagation of
surface waves, we can see that the p ¼ 1 glory is the
result of interference between scattered light that
has followed two counter-rotating propagation paths.
As already noted, the v-shaped pattern centered on
τ ≈ 183 fs in Fig. 8(a) indicates that two p ¼ 1 pulses
can be observed as θ → 180°. The two pulses can
easily be distinguished in the time domain by using
a pulse duration of 5 fs, as shown in Fig. 8(a), except
when the two scattered pulses are separated by less
than about 10 fs (i.e., when θ > 175°).

For continuous-wave illumination (as in Fig. 7),
constructive interference occurs when the difference
Δ in path length between the two propagation modes
is Δ ¼ mλ, where m is an integer. For θ ¼ 180° − δ,
the path length differs by Δ ¼ 2πrð2δ=360°Þ where
δ is measured in degrees. When r ¼ 10 μm and

Fig. 8. (Color online) p ¼ 1 impulse response as a function of
scattering angle θ calculated using (a) Debye series and
(b) geometric optics.

Fig. 9. (Color online) Two p ¼ 1 propagation paths involving
surface waves resulting in θ ¼ 150°.
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λ× ¼ 650 × ×nm, maxima should occur when δ is a
multiple of 1:86° (i.e., at θ ¼ 180°, 178:1°, 176:4°
and 174:1°) corresponding to the rings of the p ¼ 1
glory, confirming the results shown for parallel polar-
ization in Fig. 7. As δ increases, the “long-path” sur-
face wave contribution becomes much weaker than
the “short-path” surface wave contribution, thus ex-
plaining why the glory appears only when δ is small
—i.e., when θ → 180°. Although the Debye calcula-
tions for p ¼ 1 scattering show clear evidence of a
glory when θ → 180°, this glory is much weaker than
the scattering for other values of p—and, hence, it
cannot be observed in practice. Nevertheless, the p ¼
1 glory is worth studying because, as will be seen in
the next section, the atmospheric glory caused by p ¼
2 scattering is formed by similar processes.

C. p ¼ 2 Scattering

Figure 10 shows the intensity of p ¼ 2 scattering
(caused by one internal reflection in the sphere) cal-
culated using the Debye series. The maximum inten-
sity occurring at θ ≈ 142° and τ ≈ 170 fs corresponds
to the primary rainbow. Although this diagram is
more complicated than Figs. 6 and 8, much of it
can be explained by reference to the results of ray-
tracing calculations, which have been superimposed
on Fig. 10 as parametric curves as a function of b.
In this case, b ¼ 0 corresponds to a ray that passes
through the center of the sphere and then suffers
an internal reflection and is scattered at θ ¼ 180°
(backscattering) with delay τ ¼ 177:7 fs. As b in-
creases, the value of θ reduces until it reaches its
minimum value at the geometric primary rainbow
angle θr1 ¼ 137:9° when b ¼ 0:8611. Further in-
creases in b cause θ to increase until θ ¼ 165:5° when
b ¼ 1. Note that geometrical optics predicts maxi-
mum intensity at θr1 ¼ 137:9°, whereas the Debye
calculations show a maximum at θ ≈ 142°. Despite

this difference, it is interesting to realize that geome-
trical optics shows that the minimum value of time
delay τ occurs at θr1—implying that the rainbow
corresponds to the shortest path (as well as the
maximum intensity).

Two geometric rays cause scattering when
137:9° < θ < 165:5°. Interference between these two
rays causes the supernumerary arcs on the primary
rainbow—which appear in Fig. 2 as maxima and
minima of the p ¼ 2 curve. Figure 10 shows that
the results of the Debye p ¼ 2 calculations agree very
well with the time delays from ray-tracing calcula-
tions for 0 ≤ b ≤ 1.

These calculations have been made for spherical
droplets of water with radius r ¼ 10 μm, which are
typical of fog rather than rain. With such small dro-
plets, the rainbow (known as a fogbow) tends to be
almost white, instead of the brilliantly colored rain-
bows that are produced by raindrops of larger radius,
such as r ¼ 500 μm or more. Calculations in the time
domain of p ¼ 2 scattering caused by large drops of
water produce diagrams very similar to Fig. 10,
except that the time delays are much larger due to
size of the drops.

As with p ¼ 1 scattering, surface waves play a
significant role in p ¼ 2 scattering, as indicated by
the dashed lines starting from θ ¼ 165:5° and
τ ¼ 184:1 fs. Looking at the results for θ ¼ 150°, we
can see a p ¼ 2 pulse at τ ≈ 210 fs, which also appears
in Fig. 4. Figure 11 offers an explanation for this
nongeometrical pulse: an incident ray with b ¼ −1
suffers one internal reflection before generating
surface waves, which propagate along an arc of 44:5°
before leaving the sphere at θ ¼ 150°. Assuming that
surface waves travel at 0:98c around the circum-
ference of the sphere, this propagation path would
correspond to τ ¼ 210:5 fs.

As surface waves are the dominant cause of the
atmospheric glory, it is worth looking in more detail
at Fig. 10, specifically as θ approaches 180°, where
the two dashed lines converge at θ ¼ 180° and τ ¼
192:7 fs to produce a v-shaped pattern. When the dif-
ference in the time delays is less than the duration of
the incident pulse (5 fs), the two pulses (one due to
“short-path” p ¼ 2 surface waves and the other due
to “long-path” p ¼ 2 surface waves) merge into a
single pulse. The intensity of the resulting pulse
depends on the relative phase of the two components,

Fig. 10. (Color online) p ¼ 2 impulse response as a function of
scattering angle θ calculated using the Debye series.

Fig. 11. (Color online) p ¼ 2 propagation path involving surface
waves resulting in θ ¼ 150°.
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just as it does for illumination by a continuous-wave
source of light. Figure 10 shows increased intensity
at θ ≈ 178° due to constructive interference between
the two components.

Figure 12 shows that there are three p ¼ 2 propa-
gation paths that result in scattering at θ ¼ 175°.
Ray A with b ¼ 0:0871 is a geometric ray that suf-
fers one internal reflection giving θ ¼ 175° with
τ ¼ 177:5 fs. Ray B with b ¼ 1 suffers one internal
reflection and generates surface waves that travel
approximately 9:5° along the surface of the spherical
particle, giving θ ¼ 175° with τ ¼ 189:7 fs. Similarly,
Ray C with b ¼ −1 suffers one internal reflection and
generates surface waves that travel approximately
19:5° along the surface of the spherical particle,
resulting in θ ¼ 175° with τ ¼ 195:7 fs. Note that
Rays B and C travel in opposite directions around
the water droplet: the resulting interference pattern
between the short-path and long-path surface waves
corresponds to the glory [20].

Although Fig. 12 is concerned only with scattering
at θ ¼ 175°, Fig. 13 shows the intensity of the scat-
tering contributions for 170° < θ < 180° due to type

A, B and C propagation paths (i.e., the contributions
due to near-central p ¼ 2 reflections, the “short-path”
and “long-path” p ¼ 2 surface waves, respectively).
Figure 13 has been derived from time domain calcu-
lations for a 5 fs pulse, which does not achieve com-
plete separation of the scattered pulses of type B and
C for θ > 175°, but good separation is possible for
θ < 174°. Figure 13 shows that propagation paths in-
volving surface waves (type B and C) are dominated
by parallel polarization—and, perhaps, surprisingly
that short-path surface waves (type B) give stronger
scattering than the near-central geometrical reflec-
tion (type A).

In summary, p ¼ 2 scattering is responsible for the
primary rainbow with the supernumerary arcs being
caused by interference between two geometric rays
that both result in scattering at a specific value of
θ despite having followed different paths through
the water drop. Note that the geometric primary
rainbow angle θr1 is dependent on the refractive in-
dex n1 of water. As n1 varies with wavelength λ, θr1
also varies with λ—for example, when λ ¼ 400nm,
n1 ¼ 1:3445, and θr1 ¼ 139:6° and when λ ¼
700nm, n1 ¼ 1:3314, and θr1 ¼ 137:7°. This indicates
that the primary rainbow has a width of about 2°
between the red and violet arcs. On the other hand,
p ¼ 2 propagation paths trigger counter-rotating
surface waves that result in the colored rings of the
atmospheric glory centered on θ ¼ 180° (the anti-
solar point)—in this case, the angular size of the
glory is determined by the size of the water droplet
rather than being determined by the refractive index
n1 [21].

D. p ¼ 3 Scattering

Figure 14 shows the intensity of p ¼ 3 scattering
(caused by two internal reflections in the sphere)

Fig. 12. (Color online) Three p ¼ 2 propagation paths resulting in
θ ¼ 175°. Ray A is a geometrical ray, whereas rays B and C involve
surface waves.

Fig. 13. (Color online) Intensity of p ¼ 2 scattering for propaga-
tion paths of type A, B and C as defined in Fig. 12 derived from the
time domain results summarized in Fig. 10.

Fig. 14. (Color online) p ¼ 3 impulse response as a function of
scattering angle θ calculated using the Debye series.
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calculated using the Debye series. The zone of max-
imum intensity occurring at θ ≈ 125° and τ ≈ 235 fs
corresponds to the secondary rainbow. Many of the
features of Fig. 14 can be explained by reference to
ray-tracing calculations: In this case, b ¼ 0 corre-
sponds to a ray that passes through the center of
the sphere and then suffers two internal reflections
and is scattered at θ ¼ 0° (forward scattering) with
a delay τ ¼ 266:5 fs. As b increases, the value of θ
increases until it reaches its maximum value at the
geometric secondary rainbow angle θr2 ¼ 129:2°
when b ¼ 0:9503. Further increases in b cause θ to
decrease until θ ¼ 111:8° when b ¼ 1. The effects of
p ¼ 3 surface waves are indicated by the dashed lines
starting from θ ¼ 111:8° and τ ¼ 242:8 fs.

Returning to Fig. 4, an unexplained p ¼ 3 pulse
was noted at τ ≈ 220 fs. This is marked in Fig. 14
by the þ symbol, which coincides with the diagonal
“finger” of intensity associated with the secondary
rainbow at θ ≈ 125° and τ ≈ 235 fs. As rainbows
correspond to the transition between two rays and
zero rays, geometrical optics predicts an abrupt tran-
sition to zero intensity in the “unlit” area at θr2. This
unrealistic transition is softened by the Debye series
calculations (and by Airy theory), which show de-
creasing intensity in the zone with no geometric rays.
The p ¼ 3 pulse at θ ¼ 150° and τ ≈ 220 fs is the
result of a “complex ray” [3], which occurs in the zero-
ray region as defined by geometrical optics. Complex
rays appear on all rainbows—as can be seen by
examination of Fig. 10.

5. Conclusions

Analysis of scattering in the time domain reveals a
wealth of information about scattering processes
that is simply not available when the scattering
particle is illuminated by a continuous-wave light
source. The time domain results reported in this
paper for spherical droplets are based on calculations
using Mie theory, the Debye series and ray tracing—
with excellent agreement among all three methods.
Geometrical optics is frequently considered to be
inadequate for scattering from small particles, but
this paper’s results for scattering of red light by a
water droplet of radius r ¼ 10 μm (corresponding
to size parameter x ¼ 2πr=λ ≈ 96) are surprisingly
accurate.

While ray tracing is obviously an approximation, it
can be used to identify the propagation paths taken
by geometrical rays, as well as to confirm the scatter-
ing contributions due to surface waves—such as the
p ¼ 2 surface waves that cause the atmospheric
glory. Similarly, the ray-tracing results show that
the supernumerary arcs of rainbows are due to inter-
ference between pairs of geometric rays that emerge
from the scattering particle at a given scattering
angle θ.

On the other hand, the time domain results for
p ¼ 0 show that the diffraction process (which causes
the corona) is marked by a characteristic inverted
v-shape pattern when the impulse response is

displayed as a function of θ, suggesting that the dif-
fraction can be considered as a two-ray interference
pattern.

More generally, the time domain results reveal the
intricate details of the various scattering mechan-
isms, some of which are essentially undetectable
except in the time domain. These results can be used
to provide greater understanding of light scattering
by spherical particles, such as droplets of water.

The author would like to thank the two anony-
mous reviewers for their helpful and constructive
suggestions.
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