
Published in Applied Optics, 56, 19, G104-G111 (1 July 2017) 

 

Supernumerary arcs of rainbows:  

Young’s theory of interference 

PHILIP LAVEN 

9 Russells Crescent, Horley, RH6 7DJ, UK (philip@philiplaven.com) 

Received 13 February 2017; revised 13 April 2017; accepted 13 April 2017; posted 14 April 2017 (Doc. ID 285088); published 15 May 2017 

 

Supernumerary arcs on rainbows are historically important because in the early 1800s they provided evidence in 

favor of the wave theory of light.  The success of Airy’s rainbow integral has overshadowed the earlier contribution 

from Young, who proposed that supernumerary arcs were caused by interference between two geometrical rays 

that emerge from the raindrop at the same scattering angle. Airy dismissed Young’s idea as “the imperfect theory of 

interference” because it predicted supernumerary arcs at the wrong angles.  Young was unaware that a light ray 

encountering a focal line can suffer a phase shift of 90°. If these phase shifts are taken into account, the theory of 

interference becomes surprisingly accurate.  © 2017 Optical Society of America 

OCIS codes: (010.1290) Atmospheric optics; (290.5825) Scattering theory. 
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1. INTRODUCTION 

Supernumerary arcs occasionally accompany rainbows, as 

illustrated by the simulation in Fig. 1.  This simulation shows many 

closely-spaced supernumerary arcs below the primary rainbow, 

together with some wider-spaced supernumerary arcs above the 

secondary rainbow. As raindrops typically have a broad distribution of 

sizes, it is rare to see a primary rainbow with more than 2 or 3 

supernumerary arcs, as shown in Fig. 2. Observations of 

supernumerary arcs on secondary rainbows are even rarer. 

 

 

Fig. 1   Mie theory simulation of primary and secondary rainbows with 

their supernumerary arcs caused by the scattering of sunlight by 

monodisperse water drops of radius r = 200 μm.  

 

The overall aim of this paper is to re-examine Young’s theory of 

interference [1] as applied to supernumerary arcs. Section 2 contains a 

brief historical perspective. Section 3 reviews the theory of 

interference, crucially taking into account the phase shifts associated 

with focal lines. Section 4 compares the results of various calculation 

methods for the supernumerary arcs. Section 5 offers some 

conclusions. 

 

 

 

Fig. 2 Primary rainbow with three supernumerary arcs © Philip Laven 
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2. HISTORICAL PERSPECTIVE 

In the 17th century, Descartes [2] used the principle of refraction to 

explain the concentration of light corresponding to the primary and 

secondary rainbows using geometrical optics. Newton [3] used his 

theory of light and color to explain the colors of the rainbow. Taken 

together, these two theories still provide an excellent account of the 

formation of rainbows. 

However, during the 18th century, there were various reports [4, 5] 

of primary rainbows having additional purple arcs under the rainbow. 

It is interesting to compare the simulation in Fig. 1 with one of 

Langwith’s detailed descriptions from [4]: 

 

The colours of the primary rainbow were as usual, only the purple very 

much inclining to red, and well defined: Under this was an arch of green, 

the upper part of which inclined to a bright yellow, the lower to a more 

dusky green: Under this were alternately two arches of reddish purple 

and two of green: Under all a faint appearance of another arch of purple, 

which vanished and returned several times so quick, that we could not 

steadily fix our eyes upon it.  Thus the order of the colours was 

I. Red, orange colour, yellow, green, light blue, deep blue, purple. 

II. Light green, dark green, purple. 

III. Green, purple. 

IV. Green, faint vanishing purple. 

You see we had here four orders of colours, and perhaps the beginning 

of a fifth, for I make no question that what I call the purple, is a mixture of 

the purple of each of the upper series with the red of next below it, and the 

green a mixture of the intermediate colours.  I send you not this account 

barely upon the credit of my own Eyes; for there was a Clergyman and 

four other Gentlemen in Company, whom I desired to view the Colours 

attentively, who all agreed, that they appeared in the manner that I have 

now described. 

 

As geometrical optics could not account for these observations of 

supernumerary arcs, another explanation was necessary. Noting these 

reports, Thomas Young put forward a new idea in his 1803 Bakerian 

Lecture to the Royal Society in London. This lecture [1], entitled 

“Experiments and Calculations relative to physical Optics”, highlighted 

the effects of interference between light waves. In particular, Young 

said “The repetitions of colours sometimes observed within the common 

rainbow …  admit also a very easy and complete explanation from the 

same principles.” As illustrated in Fig. 3, p = 2 scattering at θ > θr (where 

θr is the geometric rainbow angle caused by a ray with impact 

parameter b0) can be due to two geometric rays: one with impact 

parameter b < b0 and the other with b > b0. Young postulated that 

supernumerary arcs were the result of interference between the two 

ray paths: maxima will occur when the difference in the optical path 

lengths is n λ (where n is an integer), whilst minima will occur when 

the difference is (n + ½) λ. 

Although this theory is very simple, it does not seem to have been 

tested until Airy’s 1838 paper [6] which contained a graph similar to 

Fig. 4 comparing three different methods of calculating |S1(θ)2| for the 

primary rainbow – where S1(θ) is the amplitude function for TE 

polarization defined by van de Hulst. [7] The black curve in Fig. 4 

labeled Descartes shows the result of simply adding the contributions 

from the two geometrical rays which result in p = 2 scattering at θ > θr. 

The blue curve labeled Young shows the result of two-ray interference 

taking into account the difference in their optical path lengths. The red 

curve shows the result of using Airy’s rainbow integral. The two curves 

based on geometrical optics (Descartes and Young) show an abrupt 

transition from infinite intensity when θ = θr = 137.92° and zero 

intensity when θ < θr, whereas the Airy curve predicts maximum 

intensity when θ ≈ 139° with a gradual reduction when θ < 139°. Airy 

theory thus addressed the complete failure of geometrical optics in the 

vicinity of θr. Turning to the supernumerary arcs, Fig. 4 shows 

significant discrepancies in the predicted maxima and minima. Airy did 

not acknowledge Young as the originator of the theory of interference, 

but he dismissed it as “the imperfect theory of interference”.  

Given the overwhelming success of Airy’s rainbow integral, it is not 

surprising that Young’s theory is frequently considered to have been a 

blunder in the scientific understanding of rainbows. Nevertheless, 

many authors [7-14] rely on Young’s easily-understood explanation of 

supernumerary arcs before favoring the more mathematical solution 

of Airy theory.  

 

 

Fig. 3   Geometric p = 2 ray paths emerging at θ = 141° for a sphere of 

refractive index m = 1.333.  The Descartes ray with impact parameter 

b0 = 0.8608 results in p = 2 scattering at the geometric rainbow angle θr 

= 137.92°. 

 

Fig. 4   Comparison of S1(θ)2 using various calculation methods for p = 

2 TE scattering of red light λ = 0.65 μm by a sphere of radius r = 100 μm 

and refractive index m = 1.333. This graph is similar to Fig. 4 in [6] 

except that Airy described the three curves respectively as “the theory 

of emission”, “the imperfect theory of interference” and “the theory of 

undulations”. 
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3. THE THEORY OF INTERFERENCE 

Why does Young’s theory of interference wrongly predict the angles 

of the supernumerary arcs? Young suggested that the interference 

pattern was due to the difference in path lengths of the two rays exiting 

at the each value of θ (as illustrated in Fig. 3). The phase delay φ in 

degrees due to the optical path length between the entrance and exit 

planes of the sphere is given by: 

 

φ = 720° (r / λ) [1 - cos(θi) + p m cos(θr)]  (1) 

 

where r is the radius of the sphere, λ is the wavelength of the light in a 

vacuum, θi  is the angle of incidence, θr  is the angle of refraction, the 

number of internal reflections is p – 1 and m is the refractive index of 

the sphere. The blue curve in Fig. 4 has been calculated by using 

geometrical optics to determine the amplitudes of the two rays 

contributing to scattering at each value of θ and applying Eq. (1) to 

determine their relative phases. For example, the maximum 

corresponding to the first supernumerary arc at θ = 140.66° occurs 

because the two rays differ in phase by 360°, whilst the next maximum 

at θ = 142.29° is due to a phase difference of 720°. 

Unfortunately, as shown by Fig. 4, these maxima do not coincide 

with Airy’s results. The problem is that, as discovered by Gouy in 1861 

[15, 16], light passing through a point focus is advanced in phase by 

180°, whereas light passing through a focal line is advanced in phase by 

90°. Although various explanations for these phase anomalies have 

been suggested [17-21], it is fair to say that Gouy phase shifts are still 

not widely understood. 

In the more practical context of scattering of plane waves by a 

sphere, van de Hulst [7] explained that a phase advance of 90° occurs 

at the passage of two types of focal line: 

 

a. Any point of intersection of two adjacent rays in a meridional 

cross section is a point of a focal curve. The full focal curve is a 

circle around the axis in a plane perpendicular to the axis.  

b. Any point where a ray intersects the axis is a point of a focal line 

because corresponding rays in other meridional sections have 

the same point of intersection. The full focal line is the full axis, 

both before and beyond the sphere. 

 

The nature of these encounters with focal lines is illustrated in Fig. 5, 

which shows a set of 50 p = 2 rays with impact parameters b equally 

spaced between b = 0 and b = 1. Although all of the rays in Fig. 5 are 

composed of straight line segments, caustic curves are clearly visible: 

the caustic curve marked 1 is the boundary between an area 

containing rays and an area entirely free of rays. This caustic is created 

by many rays touching the caustic at various points – with none of 

them crossing the caustic.  The caustic curve marked 2 is similar in that 

it is formed by a set of rays touching the caustic at various points, but 

other rays cross this caustic. Another caustic is formed outside the 

sphere by rays when they leave the sphere, but this is very difficult to 

see in Fig. 5. 

In line with van de Hulst’s definition of type (a) focal lines as the 

points of intersection of adjacent rays, the locations of these points of 

intersection are plotted in Fig. 6. The two internal caustics meet when b 

= b0 = 0.8608 since one is caused by rays with 0 < b < b0 and the other is 

generated by rays with b0  < b < 1. The external caustic is generated 

only by rays with b0  < b < 1. 

Let us consider the two rays from Fig. 3 which result in θ = 141°. Fig. 

7 shows that the lower ray (b = 0.7287) is one of the rays that generate 

the focal line of type (a) at point A and then crosses the axis, a focal line 

of type (b), at point B. As this ray interacts with two focal lines, its phase 

is advanced by 180°. Fig. 8 shows a similar diagram for the upper ray 

from Fig. 3 (b = 0.9428): this ray participates in the creation of the focal 

line of type (a) at point A, then crosses the axis, focal line of type (b), at 

point B before intersecting external caustic, a focal line of type (a), at 

point C – thus interacting with three focal lines, resulting in the phase of 

this ray being advanced by 270°. 

Focal lines of type (a) cause a phase shift of 90° only for those rays 

which participate in the creation of the focal line: for example, after the 

ray in Fig. 8 is tangential to the focal line at point A, it then crosses the 

other branch of the focal line at an angle of almost 90° (as can be seen 

more clearly in Fig. 9). The first interaction results in a phase shift of 

90° but no phase shift occurs as a result of crossing the other branch of 

the internal caustic because, as shown in Fig. 6, this caustic is generated 

by rays with 0 < b < b0. 

More generally, the lower p = 2 rays (those with impact parameters 

b < b0) participate in two focal lines: one of type (a) and one of type (b). 

However, the upper rays (those with impact parameters b > b0) 

participate in three focal lines: two of type (a) and one of type (b). 

Consequently, the overall phase delays calculated using Eq (1) needs to 

be reduced by 180° for the lower rays and by 270° for the upper rays. 

Armed with this new information, we can revisit the calculations for 

the supernumerary arcs. As shown in Fig. 10 for this modified version 

of Young’s theory of interference, the maxima corresponding to the 

first and second supernumerary arcs now occur at θ = 141.11° and θ = 

142.6°. 

Fig. 10 shows that the modified version of Young’s theory of 

interference gives  results that are similar to those of Airy theory. 

Nevertheless, as Airy theory is only an approximation, it is more 

appropriate to judge the validity of the modified version of Young’s 

theory by comparing it with a rigorous calculation method, namely the 

Debye series [22-24]. The Debye series is a reformulation of Mie theory 

[25] that allows, for example, p = 2 scattering contributions to be 

isolated. Fig. 11 compares the results of Debye series p = 2 calculations 

and the modified version of Young’ theory. Noting that the blue curve 

obscures the red curve for the entire range of the supernumerary arcs 

(i.e. θ > 139.2°) in Fig. 11, it is clear that the two methods produce 

almost identical results for the supernumerary arcs. 

Of course, it is possible that the very close agreement shown in Fig. 

11 is simply a coincidence. Hence, Fig. 12 presents a comparison 

between the Debye series and the modified theory of interference for r 

= 500 μm. Again, there is excellent agreement between the two 

methods, even as far as the 20th supernumerary arc. 

On the other hand, Fig. 13 shows a comparison between Airy theory 

and the Debye series for r = 500 μm. Although Airy theory accurately 

predicts the first few supernumerary arcs, it becomes much less 

accurate for subsequent maxima. Fig. 13 emphasizes the inadequacy of 

Airy theory in terms of the supernumerary arcs, especially in 

comparison with the modified theory of interference.  

It is interesting to speculate how Young and Airy might react to Figs. 

11-13. For example, Airy might point to the total failure of the modified 

theory of interference near the geometric rainbow angle, but he would 

probably be amazed by the superiority of the modified theory in terms 

of the supernumerary arcs.  

Even so, it must be noted that this apparent superiority over Airy 

theory is somewhat hypothetical: for example, the appearance of very 

high-order supernumerary arcs as shown in Fig. 13 could be achieved 

with plane wave monochromatic light under ideal circumstances, such 

as scattering by a single droplet of water. On the other hand, 

supernumerary arcs on natural rainbows are smoothed by the 0.5° 

apparent angular diameter of the sun – as shown in Fig. 14. 

Furthermore, variations in the size of raindrops frequently wash out 

the supernumerary arcs, as illustrated in Fig. 15 where it is assumed 

that raindrops have a mean radius of 100 μm with a normal 

distribution with standard deviation of σ = 10 μm. Although Fig. 15 
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shows some differences between Airy theory and the rigorous Debye 

series calculations, the two methods give very similar results. Taking 

such factors into account, there is probably little difference between 

the various methods of calculating the supernumerary arcs of natural 

rainbows. 

 

 

 

Fig. 5   A set of p = 2 ray paths for a sphere of refractive index m = 1.333 

showing the development of caustics. 

 

Fig. 6   Caustics of type (a) generated by the intersections of adjacent 

rays for a sphere of refractive index m = 1.333 The numbers indicate 

the ranges of the impact parameter b responsible for each caustic. 

 

Fig. 7   A p = 2 ray with impact parameter b = 0.7287 resulting in 

scattering angle θ = 141°. Focal lines of type (a) are shown as red lines, 

whilst the axis, a focal line of type (b), is shown by a horizontal gray 

line. The phase of this ray is advanced by 90° at points A and B. 

 

Fig. 8   A p = 2 ray with impact parameter b = 0.9428 resulting in 

scattering angle θ = 141°. Focal lines of type (a) are shown as red lines, 

whilst the axis, a focal line of type (b), is shown by a horizontal gray 

line. The phase of this ray is advanced by 90° at points A, B and C. 
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Fig. 9   An enlarged portion of Fig. 8 showing that the ray with b = 

0.9428 is tangential to the focal line at point A, then crosses another 

focal line at an angle close to 90° before being reflected at the surface of 

the sphere. It then crosses the axis at point B.  

 

Fig. 10   Comparison of results for p = 2 TE scattering of red light λ = 

0.65 μm by a sphere of radius r = 100 μm and refractive index m = 

1.333 using Airy theory and a modified version of Young’s theory. 

 

Fig. 11   Comparison of results for p = 2 TE scattering of red light λ = 

0.65 μm by a sphere of radius r = 100 μm and refractive index m = 

1.333 using the Debye series and a modified version of Young’s theory. 

 

Fig. 12   As Fig. 11 except that r = 500 μm.  

 

Fig. 13   Parameters as in Fig. 12 but comparing results from the Debye 

series and Airy theory. 

 

Fig. 14   As Fig. 13 but assuming that the light source has an apparent 

diameter of 0.5°. 

 

Fig. 15   Comparison of results for p = 2 TE scattering of red light λ = 

0.65 μm, radius r = 100 μm with a normal distribution σ = 10 μm and 

refractive index m = 1.333 using the Debye series and Airy theory. 
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Fig. 16   Comparisons of Debye series and Young (mod.) results for p = 

2 scattering of red light (λ = 0.65 μm) by spherical drops of water of 

refractive index m = 1.333 with the specified values of radius r. Note 

that the axes of these graphs use different scales. 

 

Fig. 17   Comparisons of Debye series and Young (mod.) results for p = 

3 scattering of red light (λ = 0.65 μm) by spherical drops of water of 

refractive index m = 1.333 with the specified values of radius r. Note 

that the axes of these graphs use different scales. 
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Fig. 18   Comparisons of Debye series and Young (mod.) results for p = 

4 scattering of red light (λ = 0.65 μm) by spherical drops of water of 

refractive index m = 1.333 with the specified values of radius r. Note 

that the axes of these graphs use different scales. 

 

Fig. 19   Comparisons of Debye series and Young (mod.) results for p = 

5 scattering of red light (λ = 0.65 μm) by spherical drops of water of 

refractive index m = 1.333 with the specified values of radius r. Note 

that the axes of these graphs use different scales. 
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4. TESTING THE MODIFIED THEORY OF INTERFERENCE 

The above results indicate that the modified theory of interference 

can be very accurate for supernumerary arcs caused by p = 2 

scattering. Nevertheless, it is important to determine the theory’s limits 

of validity by examining its performance at various values of radius r 

and for different values of p.  

Fig. 16 compares the results of Debye series calculations for p = 2 

scattering with the modified version of Young’s theory of interference 

for water droplets of different values of radius r. Whereas previous 

graphs in this paper have been concerned only with TE polarization 

which is dominant in rainbows, Fig. 16 also shows |S2(θ)|2 for TM 

polarization. Fig. 16(a) for r = 200 μm shows excellent agreement 

between the two calculation methods for TE and TM polarizations. The 

principal differences are confined to scattering angles θ < 139° where 

geometric optics fails completely. 

The other graphs in Fig. 16 indicate that the accuracy of the modified 

theory of interference becomes worse as the droplet radius r is 

reduced: for example, the results for r = 50 μm in Fig. 16(c) show a 

gradual reduction in the maximum/minimum ratios of the 

supernumerary arcs for θ > 155°. This problem is due to the fact that 

ray theory fails as the impact parameter b → 1 (i.e. as it approaches the 

edge of the droplet). For the conditions assumed in Fig. 16 (m = 1.333 

and p = 2) an edge ray with b = 1 results in θ = 165.6°. In this case, ray 

theory predicts that the upper ray’s contribution to the supernumerary 

arc rapidly reduces  as θ → 165.6° and disappears completely when θ > 

165.6°. This behavior is obvious in Figs. 16(d) and (e) where the 

supernumerary arcs are completely absent for θ > 165.6°. 

Despite these failings, Fig. 16 shows that the modified theory of 

interference gives very accurate results for the first 5 or 6 

supernumerary arcs for r = 50 μm. Furthermore, even when r = 10 μm, 

the prediction of the first TE supernumerary arc at θ ≈ 152° is 

remarkably accurate. 

It is worth recalling that Airy theory is limited to the primary 

rainbow (i.e. p = 2) and does not deal with TM polarization. However, 

the modified theory of interference can be readily used to produce 

results for p = 3, 4 and 5, as well as for both polarizations – as 

illustrated in Figs. 17–19 respectively.  

In analyzing these results, it is important to bear in mind the failure 

of ray theory when the impact parameter b → 1. As noted above, 

complete failure occurs when θ > 165.6° for p = 2 scattering. The 

equivalent conditions are θ < 111.6° for p = 3 in Fig. 14, θ < 28.9° for p = 

4 in Fig. 18 and θ > 53.9° for p = 5 in Fig. 19. 

The results in Figs. 16–19 demonstrate that the modified theory of 

interference gives excellent results for large values of r , but becomes 

less accurate as r is reduced.   

In another paper in this feature issue, Lock [26] has investigated the 

validity of Airy theory and geometrical optics for rainbows involving 

near-grazing incidence. In particular, he suggested that the validity was 

dependent on the parameter s = [p / (m2 – 1)1/2] (2/x)1/3. where the 

size parameter x = 2 π r / λ. The relevant value of s is given in each of 

the graphs in Figs. 16–19. After taking account of the above-mentioned 

limiting values of θ due to edge rays, the modified theory of 

interference seems to produce  valid results for, at least, the first 

supernumerary arc when s < 0.7.  

 

5. CONCLUSIONS 

Young’s theory of interference as an explanation of supernumerary 

arcs was dismissed by Airy as the “imperfect theory of interference”. It 

is true that Young’s theory wrongly predicts the maxima and minima 

corresponding to the supernumerary arcs of rainbows. This failure is 

due to the fact that Young did not know that a light ray interacting with 

a focal line is advanced in phase by 90°. Modifying Young’s theory of 

interference to take account of such phase changes gives very accurate 

results for the supernumerary arcs: ironically, these results are much 

more precise than those produced by Airy theory.   

The fact that supernumerary arcs can be accurately modeled as the 

interference between two geometric rays confirms that the essence of 

Young’s original idea was correct. Even so, Young’s reputation has 

undoubtedly suffered as a result of the triumph of Airy theory. Wilk 

[27] goes much further in condemning Young’s theory by saying: 

 

A little thought shows that the Imperfect Theory really is 

demonstrably erroneous in a number of ways. It is not a 

geometrical or physical optics formulation, but an incomplete 

combination of the two. It assumes strictly geometrical wave 

propagation only in direction normal to the wavefront, but 

assumes that light is in the form of waves that interfere. 

 

It may be that Wilk’s strongly-expressed view was triggered by the 

failure of geometrical optics near the rainbow angle, but we should not 

lose sight of the fact that the modified version of the “imperfect theory” 

provides an extraordinarily accurate model of the supernumerary arcs 

on rainbows. 

Nowadays, we have the luxury of computer programs based on 

rigorous calculation methods for scattering from spherical particles, 

such as Mie theory and the Debye series. Consequently, it may seem 

strange to examine the results obtained by using simple models of the 

rainbow. However, as large raindrops are not spherical, approximate 

methods of calculation, such as ray theory, are still needed to 

investigate rainbows caused by large raindrops. [28-30] In such 

circumstances, information about the supernumerary arcs can be 

obtained by applying the concept of two-ray interference. As ray paths 

within non-spherical drops are not confined to meridional planes, an 

additional challenge would be to determine the locations of focal lines 

in and around non-spherical drops. 
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