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We consider transmission scattering of a plane wave by a radially inhomogeneous sphere containing a localized 

region of refractive index decrease. In ray theory, the boundary conditions on the deflection angle at axial and 

grazing incidence determine that transmission scattering gives rise to an even number of bows, half of them being 

relative maximum bows and half being relative minimum bows. For a model refractive index profile, we determine 

the conditions under which different numbers of bows occur, and we suggest physical mechanisms responsible for 

producing them. We also verify that these bows occur in wave scattering in the short wavelength limit, both in the 

frequency-domain and in the time-domain. © 2017 Optical Society of America 

OCIS codes: 080.5692 (ray trajectories in inhomogeneous media), 260.2710 (inhomogeneous optical media), 290.4020 (Mie theory), 290.5825 

(scattering theory). 
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1. INTRODUCTION 

For scattering of a monochromatic electromagnetic plane wave by a 
homogeneous dielectric spherical particle in the short wavelength 
limit, the ray theory deflection angle for transmission is a 
monotonically increasing function of the angle of incidence. A bow 
(commonly called a rainbow if the spherical particle is a small falling 
water drop in a rain shower that is illuminated by sunlight) occurs in 
ray theory when the deflection angle possesses a relative minimum, 
which is the usually encountered case, or a relative maximum. Thus no 
bows occur for transmission scattering for the highly symmetric 
geometry of a plane wave illuminating a homogeneous sphere [1, 2]. 
Since a plane wave can be thought of as originating from a point source 
an infinite distance from the sphere, this statement must be revised for 
scattering of the radially outgoing rays emanating from a point source 
located a finite distance from the homogeneous sphere. The 
transmission bow in this case results from the opening up to the far-
zone of the formerly near-zone spherical aberration caustic [3]. The 
statement must also be revised for scattering of a plane wave having 
end-on incidence when the sphere is deformed into a prolate spheroid. 
The pair of transmission bows in this case result from the spherical 
aberration caustic turning itself inside-out [3, 4]. In each of these cases, 
the transmission bows result from symmetry breaking for either the 
incident beam or the spherical particle.  

The statement must also be revised for yet another case of 
symmetry breaking, i.e. when a plane wave is incident on a radially 
inhomogeneous sphere. In this case either a transmission bow, or a 
pair of transmission bows, have been predicted for certain refractive 
index profiles [5-8]. The purpose of this study is to examine 
transmission scattering of a plane wave by a radially inhomogeneous 

sphere from a more general point of view. We determine a set of 
boundary conditions for the deflection angle that allow two or more 
transmission bows to occur, and we suggest physical mechanisms 
responsible for producing the bows. 

The body of this study proceeds as follows. In Sec. 2 we obtain a set 
of boundary conditions for the transmission deflection angle as a 
function of the ray angle of incidence for both axial and grazing ray 
incidence. These boundary conditions dictate that only certain 
numbers of bows can occur. In Sec. 3 we consider a refractive index 
profile that decreases in a single localized radial interval. We find that 
for different values of the steepness of the decrease, either zero bows 
or two bows will occur, i.e., a relative maximum bow followed by a 
relative minimum bow. In Sec. 4 we relate the relative maximum bow 
to the near-onset of the phenomenon of orbiting [9-13], and the 
relative minimum bow to increased refraction of rays whose trajectory 
passes through only the outer portion of the refractive index transition 
region. In Sec. 5 we validate the ray theory results by computing 
Lorenz-Mie scattering by a finely-stratified sphere having the refractive 
index profile considered in Sec. 3. In order to gain further information 
about the bows in the context of wave scattering, we compute time-
domain scattering of a short incident pulse by the radially 
inhomogeneous sphere. From these results we suggest the overall 
caustic morphology of the two transmission bows. In Sec. 6 we 
consider a refractive index profile containing two localized radial 
intervals of refractive index decrease. This results in four transmission 
bows, a pair of relative maximum bows and a pair of relative minimum 
bows. In Sec. 7 we recount the principal results of this study. Finally, in 
Appendix A we derive the ray theory signature of a bow in the time-
domain. 



 

2. GENERAL CONSIDERATIONS 

We consider scattering of an electromagnetic plane wave of field 
strength E0 traveling in vacuum in the +z direction and polarized in the 
x direction which is incident on a radially inhomogeneous sphere of 
radius a and refractive index profile m(r) centere
coordinates. We consider the sphere to be a material particle with 
> 1 rather than a bubble with 0 < m(r) < 1. The plane wave may be 
considered as a collection of parallel light rays crossing the 
different distances r from the origin with 0 ≤ r < ∞.
of incidence of a light ray at the sphere surface θi, and the positive sense 
of the deflection angle Θ are shown in Fig. 1. In this study we consider 
only transmission scattering where a ray with the angle of incidence 
is refracted into the sphere, travels a curved trajectory inside the 
radially inhomogeneous particle, and is transmitted out in the 
direction having not undergone any internal reflections.
analysis described here can be extended to various numbers of 
internal reflections.  

Application of the formula of Bouguer gives the ray 
for transmission as [14, 15] 

                    1 
Θ(θi) = -π + 2θi + 2 sin(θi) ∫ (dw / w) [η2(w) – sin2(
                 wT 

We define  
w ≡ r / a     

so as to have dimensionless quantities. In addition, the behavior of the 
function 

η(w) ≡ w m(w)     
will be found to be of great significance. The closest approach of the 
interior ray to the center of the sphere, i.e. the classical turning point, is 
wT with 

η(wT) = sin(θi).     
In classical mechanics, Eq. (1) also describes the trajectory of a point 

mass having energy E, and acted on by a conservative central force 
whose potential energy function is U(r), with the correspondence

m2(r) ↔ 1 – U(r) / E.   
By differentiating Eq. (5), a decreasing refractive index, d

corresponds to an attractive force, and an increasing refractive index, 
dm/dw > 0, corresponds to a repulsive force. In this study we consider 
only dm/dw ≤ 0.  

The transmission deflection angle of Eq. (1) exhibits five basic 
properties. First,  

Θ(0°) = 0.      
This says that the axial ray with θi = 0° enters the sphere without 

refraction, travels in a straight line inside, and exits without refraction
This result is intuitively sensible. It can also be derived from Eq.(1) by 
(i) assuming that θi is small, (ii) substituting this condition into the 
denominator and the lower limit of integration of the third term, (iii) 
evaluating the resulting integral exactly, and then (iv) taking the limit 
θi→0. This contribution cancels the Eirst term on the right
Eq.(1), giving Eq.(6). 

Second, the initial slope of Θ(θi) is positive, 
(dΘ/dθi)θi=0 > 0.     
This is most easily demonstrated by appealing to the 

correspondence with a point mass in the field of an attractive force of 
Eq. (5). The trajectory of the point mass always curves toward the force 
center rather than away from it in such a way as to conserve energy 
and angular momentum. Thus, for an attractive force the point mass 
always goes around the force center, rather than cutting acro
of it. In the optical case, a ray path always curves toward the region of 
higher refractive index.  

Third, as long as η(w) is a monotonically increasing function for 0 
η ≤ 1,  

Θ(θi) < ∞ for all θi .   

2 

We consider scattering of an electromagnetic plane wave of field 
direction and polarized in the 

direction which is incident on a radially inhomogeneous sphere of 
) centered on the origin of 

We consider the sphere to be a material particle with m(r) 
The plane wave may be 

considered as a collection of parallel light rays crossing the z = 0 plane 
∞. The positive angle 
and the positive sense 

In this study we consider 
only transmission scattering where a ray with the angle of incidence θi 
is refracted into the sphere, travels a curved trajectory inside the 
radially inhomogeneous particle, and is transmitted out in the Θ 

ergone any internal reflections. The method of 
analysis described here can be extended to various numbers of 

ray deflection angle 

(θi)]-1/2. (1) 

 (2) 
In addition, the behavior of the 

 (3) 
The closest approach of the 

interior ray to the center of the sphere, i.e. the classical turning point, is 

 (4) 
1) also describes the trajectory of a point 
ted on by a conservative central force 

), with the correspondence 
 (5) 

By differentiating Eq. (5), a decreasing refractive index, dm/dw < 0, 
corresponds to an attractive force, and an increasing refractive index, 

In this study we consider 

The transmission deflection angle of Eq. (1) exhibits five basic 

 (6) 
enters the sphere without 

refraction, travels in a straight line inside, and exits without refraction. 
This result is intuitively sensible. It can also be derived from Eq.(1) by 

s small, (ii) substituting this condition into the 
denominator and the lower limit of integration of the third term, (iii) 
evaluating the resulting integral exactly, and then (iv) taking the limit 

→0. This contribution cancels the Eirst term on the right hand side of 

 (7) 
This is most easily demonstrated by appealing to the 

correspondence with a point mass in the field of an attractive force of 
trajectory of the point mass always curves toward the force 

center rather than away from it in such a way as to conserve energy 
Thus, for an attractive force the point mass 

always goes around the force center, rather than cutting across in front 
In the optical case, a ray path always curves toward the region of 

) is a monotonically increasing function for 0 ≤ 

 (8) 

Fig. 1  Geometry of a ray transmitted through a sphere of radius 
impact parameter of the ray is sin(θi), and the deflection angle is 

Fig.2  Various behaviors of the function η

This condition rules out the possibility of the phenomenon of 
orbiting [9-13]. Since η(wT) = sin(θi), a potential divergence occurs at 
the lower limit of integration in Eq. (1). As long as 
in the vicinity of wT, as is the case in Fig. 2(a), the integrand will be 
proportional to (w – wT)-1/2 there. When integrated, the contribution of 
the lower limit of integration is zero, and 
is due to from the upper limit, with Θ remaining finite.
locally quadratic or cubic in the vicinity of 
c) respectively, the integrand is proportional to (
(w – wT)-3/2 there. When integrated, the lower limit diverges either 
logarithmically or to the -1/2 power, giving 
as the trajectory of the light ray orbiting around inside the sphere 
forever, and will be discussed in more detail in Sec. 4a.
orbiting is also familiar in quantum mechanical atom
[16, 17] and scattering of an alpha particle by a nucleus [17], and in 
scattering of an electromagnetic plane wave 

Since 0 ≤ sin(θi) ≤ 1, Eq. (4) dictates that the function 
locally linear in the vicinity of wT for 0 

 

ted through a sphere of radius a. The 
), and the deflection angle is Θ. 

 

(w) of Eq.(3). 

This condition rules out the possibility of the phenomenon of 
), a potential divergence occurs at 

As long as η(w) is locally linear 
, as is the case in Fig. 2(a), the integrand will be 

When integrated, the contribution of 
 the entire value of the integral 
remaining finite. But if η(w) is 

locally quadratic or cubic in the vicinity of wT, as is the case in Figs. 2(b, 
integrand is proportional to (w – wT)-1 or  

When integrated, the lower limit diverges either 
power, giving Θ → ∞. This is interpreted 

as the trajectory of the light ray orbiting around inside the sphere 
rever, and will be discussed in more detail in Sec. 4a. As a side note, 

orbiting is also familiar in quantum mechanical atom-atom scattering 
17] and scattering of an alpha particle by a nucleus [17], and in 

scattering of an electromagnetic plane wave by a Luneburg lens [18]. 
≤ 1, Eq. (4) dictates that the function η(w) must be 

for 0 ≤ η(w) ≤ 1, i.e. η(w) must be 



 

monotonically increasing over this interval. Expressed in a more 
physical way, although we are assuming that m(
function of w, it cannot decrease too fast, or else the decrease in 
will overpower the increase in w in Eq. (3). Lastly, since 
has η(1) > 1. The η function need not be monotonically increasing for 1 
< η(w) ≤ η(1), as is illustrated in Fig. 2(d), since this region does not 
correspond to an angle of incidence via Eq. (4).  

Fourth, for grazing incidence one has 
Θ(π/2) > 0.     
This can be seen by substituting θi = π/2 into Eq. (

fact that the integral has already been found to be finite.
Fifth, the final slope of Θ(θi) is 
(dΘ/dθi)θi=π/2 = 2.    
Equation (1) has θi dependence in four places, including the 

dependence of wT in the lower limit of integration via 
derivative of Eq. (1) is evaluated at θi = π/2, the divergence in two of 
the terms cancels, resulting in Eq. (10).  

Now that we have determined the way in which the graph of 
begins at θi = 0 and ends at θi = π/2, the behavior of 
two end points depends on the details of the refractive index profile 
m(w). The deflection angle can be monotonically increasing, which is 
the case for a constant refractive index. Other possibilitie
relative maximum followed by a relative minimum, or a pair of 
alternating relative maxima and relative minima, etc.
number of transmission bows can occur for a radially inhomogeneous 
particle having a decreasing refractive index and 
monotonically increasing for 0 ≤ η ≤ 1. The condition of 
prohibits an orbiting divergence in Θ(θi). Examples of all of these 
behaviors are encountered in Secs.3, 6. 

An example of the situation described by Eqs. (6-10) is the two bows 
in region η of parameter space for the generalized Luneburg sphere 
described in [8, 19]. The method of analysis described here for 
determining the number of possible transmission bows can be 
extended to other classes of refractive index profiles, including an
edgeless radially inhomogeneous particle of decreasing refractive 
index for which m(1) = 1, with η(w) monotonically increasing for 0 
≤ 1, and 0 < (dη/dw)w=1 < 1. This system has an odd number of bows.
An example is the single bow for the generalized L
region γ of parameter space as described in [8, 19, 20].
a radially inhomogeneous bubble (i.e. 0 < m(w

increasing refractive index and with η(w) monotonically increasing for 
0 ≤ η ≤ η(1). The angle of incidence for critical external reflection is 
given by sin(θiC) = η(1). This system has an even number of bows.
example is the two bows for the generalized Luneburg sphere in 
region ξ of parameter space as described in [8, 19]. Yet another class is 
an edgeless radially inhomogeneous bubble with an increasing 
refractive index for which m(1) = 1. If η(w) is also monotonically 
increasing for 0 ≤ η ≤ 1 and (dη/dw)w=1 > 1, the system has an odd 
number of bows. An example is the single bow for the generalized 
Luneburg sphere in region δ of parameter space as described in [8,
Refractive index classes where an incident ray refracts one way at the 
sphere surface and the other way once inside require more care when 
applying the method of analysis used here. Examples of these classes 
are regions ν and ψ for a generalized Luneburg sphere as described in 
[19]. 

3. MODEL REFRACTIVE INDEX PROFILE 

In order to explore the possibilities of the number of transmission 
bows described in Sec. 2, we consider the following refractive index 
profile having the four adjustable parameters D, R, M

m(w) = M + H    for 0 ≤ w ≤ 
             = M – H sin[(W – D)π / (2R)] for D – R ≤ 
            = M – H                                      for D + R ≤ 
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number of transmission bows can occur for a radially inhomogeneous 
particle having a decreasing refractive index and η(w) being 

The condition of Eq. (8) 
Examples of all of these 

10) is the two bows 
region η of parameter space for the generalized Luneburg sphere 

The method of analysis described here for 
determining the number of possible transmission bows can be 
extended to other classes of refractive index profiles, including an 
edgeless radially inhomogeneous particle of decreasing refractive 
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This system has an odd number of bows. 
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20]. Another class is 
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) monotonically increasing for 

dence for critical external reflection is 
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Examples of these classes 
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In order to explore the possibilities of the number of transmission 
2, we consider the following refractive index 

M, and H, 
≤ D – R 
≤ w ≤ D + R   
≤ w ≤ 1. (11) 

This radially inhomogeneous sphere is divided into three concentric 
regions. The innermost region has a large, constant refractive index.
The middle, or transition, region has a smooth decrease to the small, 
constant refractive index of the outermost region.
in Fig. 3. The profile varies smoothly, with both 
continuous everywhere. The greatest slope occurs at 
steepness of the transition can be parameterized by 

Substituting Eq. (11) into Eq. (1) and performing the integral 
numerically, representative results for the ray theory deflection angle 
as a function of the angle of incidence are given in 
0.333, M = 1.558, H = 0.142 and 0.05 ≤ 
orbiting is evident for R = 0.05, with relative maximum and relative 
minimum bows occurring at Θ ≈ 177° and 
more detailed view of the coalescence and extinguishing of the two 
bows when R ≈ 0.30, Fig. 4(b) shows the deflection angle for
values of D, M, H and 0.28 ≤ R ≤ 0.34. In Fig.
occurrence of an inflection point of Θ(θi

coalescence of the two bows. For R = 0.05, 0.12, 0.20, 0.25 0.30, and 
0.32 the deflection angles of the relative maximum and relative 
minimum bows are given in Table 1.
transmission bow and a relative minimum bow occur when the 
refractive index decrease is relatively steep, 0.44 < 
transmission bows occur when the refractive index decrease is 
relatively gentle, 0 ≤ H/R < 0.44. There is nothing special about the 
particular values of D, R, M, and H chosen here.
their choice will become apparent in Sec. 
from two transmission bows to zero bows was found to occur for a 
wide range of parameters used with Eq. (

Fig. 3.  Model refractive index profile of Eq. (11).

Table 1: The value of the independent parameter 

M = 1.558, and H = 0.142, the deflection angles of the relative 

maximum and minimum bows from Fig. 4.

R Θmaximum bow

0.05 177° 
0.12 61° 
0.20 47° 
0.25 43° 
0.30 42.3° 
0.32 42.3° 

This radially inhomogeneous sphere is divided into three concentric 
The innermost region has a large, constant refractive index. 

The middle, or transition, region has a smooth decrease to the small, 
tive index of the outermost region. This profile is shown 

The profile varies smoothly, with both m(w) and dm/dw being 
The greatest slope occurs at w = D, and the 

steepness of the transition can be parameterized by H/R.  
1) and performing the integral 

numerically, representative results for the ray theory deflection angle 
as a function of the angle of incidence are given in Fig. 4(a) for D = 

≤ R ≤ 0.30. The near-onset of 
= 0.05, with relative maximum and relative 

and Θ ≈ 20°. In order to provide a 
more detailed view of the coalescence and extinguishing of the two 

ws the deflection angle for the same 
Fig. 4(b) it is seen that the final 
i) is for R = 0.32, signaling the 

= 0.05, 0.12, 0.20, 0.25 0.30, and 
0.32 the deflection angles of the relative maximum and relative 
minimum bows are given in Table 1. Both a relative maximum 
transmission bow and a relative minimum bow occur when the 

y steep, 0.44 < H/R < 2.93, and no 
transmission bows occur when the refractive index decrease is 

There is nothing special about the 
chosen here. The specific reason for 

Sec. 6. A nearly identical evolution 
from two transmission bows to zero bows was found to occur for a 

Eq. (11). 
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26° 
33° 
38° 

41.4° 
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4. INTERPRETATION OF THE TRANSMISSION BOWS 

4a. Relative maximum bow 

In this subsection we show that the maximum bow results from a 
steep, localized decrease in the refractive index so that η(w) has a 
correspondingly slow, localized increase, producing the near-onset of 
orbiting. In Ref. [21] this near-onset was termed a deep rainbow. This 
interpretation can be motivated by the following general argument. 
We consider the value of the integral of Eq. (1) over an interval in w 
adjacent to a ray’s classical turning point wT. We assume that for wT ≤ w 
≤ wT + Δ the function η(w) can be well approximated by the first two 
terms of its Taylor series expansion 

η(w) ≈ η(wT) + s (w – wT) ,    (12) 
where s is the slope of η(w) at wT. The contribution of this interval to 
the integral in Eq. (1) is proportional to (Δ1/2/wT) [d(η2)/dw]-1/2wT. Let 
s0 > 0 be the minimum slope of the η(w) function, which occurs at w = 
w0 with 0 < η(w0) < 1 as in Fig. 2(e). In like manner, the contribution of 
this interval to the integral is proportional to (Δ1/2/w0) [d(η2)/dw]-1/2w0. 
It should be noted that if s0 = 0 and η(w) is locally cubic about w0 as in 
Fig. 2(c), i.e. 

η(w) ≈ η(w0) + t (w – w0)3    (13) 
the contribution of the interval w0 ≤ w ≤ w0 + Δ to the integral diverges, 
and corresponds to orbiting. If s0 is sufficiently small so that 

[d(η2)/dw]w0 ≪ [d(η2)/dw]wT  ,   (14) 
the contribution to the integral near the lower limit of integration has a 
sharp maximum. This suggests that the relative maximum bow is a 
pre-orbiting condition connected with the minimum of the slope of 
η2(w). 

The results for the refractive index profile of Eq. (11) confirm this 
interpretation. For the values of D, W, and H of Fig. 4(a), the minimum 
slope of η(w) was numerically found to vanish when R = 0.0485 or H/R 
= 2.93, giving the orbiting condition. The orbiting condition can also be 
estimated analytically. Taylor series expanding η(w) of Eq. (11) in 
powers of  

ε ≡ w – D      (15) 
we obtain 

η(ε) = DM + [M – πDH/(2R)] ε – [πH/(2R)] ε2  
          + [π3DH/(48R3)] ε3 + O(ε4).                            (16) 
Orbiting should occur when dη/dε = 0 and d2η/dε2 = 0, or when 
H/R ≈ (2M/πD) [1 – 2H2/M2 + O(H4/M4)].  (17) 
For the values of D, M, and H considered above, one obtains H/R = 

2.929 in agreement with result obtained numerically.  Thus the value R 
= 0.05 or H/R = 2.84 which produced the large relative maximum in 
Fig. 4(a), is close to the orbiting condition.  

As was mentioned above, the greatest slope of the refractive index 
profile occurs at w = D = 0.333. For the values of D, W, and H of Fig. 4(a) 
and R = 0.05, 0.12, 0.20. 0.25, and 0.30, the location w0 of the minimum 
slope of η(ε) was numerically determined, and is given in Table 2. It 
starts out being quite close to D, and then increasingly deviates from it. 
The numerically determined value of η(w0) is also given in Table 2. If 
the relative maximum bow occurred at the minimum of dη/dw, the 
angle of incidence of the rainbow ray would be sin(θi) = η(w0). In order 
to test this prediction, the impact parameter of the relative maximum 
bow from Fig. 4(a) is also given in Table 2. The correspondence is close 
when the deflection angle has a high, narrow peak, and progressively 
weakens as the deflection angle peak broadens. 
 

4b. Relative minimum bow 

In order to satisfy the boundary conditions on Θ(θi) at θi = 0° and θi = 
90°, the existence of a relative maximum bow demands the existence of 
an associated relative minimum bow. In this subsection we show that 

the relative minimum bow is associated with the tapering off of the 
refractive index decrease at the outer edge of the transition region of 
Fig. 3. This interpretation is motivated as follows. For a particle of 
constant refractive index M - H, the transmission deflection angle is 

Θ = 2 (θi – θt)      (18) 
where  

sin(θi) = (M - H) sin(θt)    (19) 
by Snel’s law. This deflection angle is a monotonically increasing 
function of the angle of incidence θi. However, for the time being it is 
more convenient to consider it as a monotonically decreasing function 
of θi as it decreases from 90° toward 0°. For the refractive index profile 
of Eq. (11), incoming rays having a large impact parameter traverse 
only the outer region of the sphere until refraction at the outer surface 
causes the interior ray to graze the outer edge of the transition region. 
This occurs when 

sin(θi) = (M - H) (D + R) .    (20) 
 
 
 
 

 

Fig. 4.  (Color online) Ray theory deflection angle Θ as a function of 
sin(θi) for the refractive index profile of Eq. (11) with D = 0.333, M = 
1.558, H = 0.142, and (a) 0.05 ≤ R ≤ 0.30, and (b) 0.28 ≤ R ≤ 0.34. 
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Table 2: The value of the independent parameter R for D = 0.333, 

M = 1.558, and H = 0.142, the value of w0 and η(w0) for the 

minimum of dη/dw numerically obtained from Eq. (11), the 

impact parameters sin(θi) of the relative maximum and 

minimum bows from Fig. 4, and the impact parameter for grazing 

incidence at the end of the region of refractive index decrease 

from Eq. (20). The third and fourth, and the fifth and sixth 

columns are to be compared to each other.  

R w0 
max bow 

η(w0) 
max bow 

sin(θi) 
max bow 

sin(θi) 
min bow 

sin(θi) 
Eq. (20) 

0.05 0.341 0.519 0.52 0.54 0.542 
0.12 0.363 0.546 0.51 0.64 0.641 
0.20 0.403 0.598 0.53 0.73 0.755 
0.25 0.433 0.638 0.57 0.77 0.826 
0.30 0.468 0.686 0.65 0.75 0.896 

 
For rays with a slightly smaller angle of incidence than in Eq. (20), 

the ray trajectory increasingly penetrates into the transition region 
where the refractive index progressively increases. This leads to 
increased refraction in the transition region and thus a tendency for its 
contribution to Θ to increase. This tendency eventually overtakes the 
continued decrease in Θ, had the refractive index continued to be M - H, 
producing the relative minimum bow. We consider an analytical 
example that illustrates this point. In the transition region of Fig. 3 we 
chose to model the η(w) function as 

η(w) = (M - H) w + α (w – D – R)2.   (21) 
The first term extrapolates the constant refractive index of the outer 

region to the transition region, and the second term is a quadratic rise 
in η(w) over this baseline. We let 

wT = D + R – Δ.      (22) 
Substitution of Eqs.(21, 22) into Eq. (1), Taylor series expanding the 

integrand, and integrating term by term gives 
Θ(θi) = 2(θi - θt) + 21/2 (8/3) {α / [(M - H) (D + R)1/2]} Δ3/2 + O(Δ5/2). 

      (23) 
As θi decreases and Δ increases, the first term in Eq. (23) decreases 

while the second term increases at a faster rate, eventually overtaking 
the decrease of the first term. Similarly, if we were to model η(w) in the 
transition region by  

η(w) = (M - H) w - β (w – D – R)3,   (24) 
substitution of Eqs.(22, 24) into Eq. (1), Taylor series expanding the 
integrand, and integrating term by term gives 

Θ(θi) = 2(θi - θt) + 21/2 (16/5) {β / [(M - H) (D + R)1/2]} Δ5/2 + O(Δ7/2).
      (25) 

Again as θi decreases and Δ increases, the first term in Eq. (25) 
decreases while the second term increases at a faster rate, eventually 
producing a relative minimum of the deflection angle. The (p-1)-order 
bows of a homogeneous sphere can also be interpreted in terms of a 
competition between the portion of the ray deflection due to refraction 
and the portion due to internal reflection. Similarly, the condition for 
orbiting in classical mechanics can be interpreted in terms of a 
competition between the attractive central force and the repulsive 
centrifugal force.  

As a numerical test of the prediction of the previous paragraph, the 
relative minimum bow for R = 0.05, 0.12, 0.20, 0.25, and 0.30 occurs in 
Fig. 4(a) at the value of sin(θi) given in Table 2. The competition 
producing this bow discussed above suggests that it occurs at an angle 
of incidence slightly below the value given by Eq. (20), which is also 
given in Table 2. The agreement between the results of Fig. 4(a) and 
the prediction of Eq. (20) is quite good, especially for values of R 
relatively close to the onset of orbiting. 

 
 

5. TRANSMISSION BOWS IN WAVE THEORY 

5a. Scattered intensity and time-domain scattering 

The transmission deflection angle as a function of angle of incidence 
in ray theory for another set of parameters of Eq. (11), D = 0.5, R = 0.2, 
M = 1.5, and H = 0.25 is shown in Fig. 5. A well-formed relative 
maximum bow occurs at sin(θi) ≈ 0.75 and Θ ≈ 121° , and a well-formed 
relative minimum bow occurs at sin(θi) ≈ 0.87 and Θ ≈ 33°. In order to 
test the mechanisms suggested in Sec. 4 for the relative maximum and 
relative minimum bows, the minimum slope of η(w) was numerically 
found to occur at w0 = 0.55 and η(w0) = 0.772, in good agreement with 
the incident impact parameter of the relative maximum bow in Fig. 5. 
Equation (20) now gives sin(θi) = 0.875, also in agreement with the 
impact parameter of the relative minimum bow in Fig. 5.  

It is of importance to verify that both transmission bows also occur 
in wave scattering, rather than being merely artifacts of ray theory. To 
do this, we computed Lorenz-Mie scattering by a finely-stratified 
sphere having 256 concentric layers whose refractive indices are the 
discretized version of Eq. (11) with the values of D, R, M, H as above. 
The transverse electric (TE) polarized scattered intensity was 
computed for λ = 0.65 μm and a = 100 μm using the parallel iteration 
method described in [22, 23]. The resulting scattered intensity shown 
in Fig. 6 and includes all the Debye series processes, not just p = 1 
transmission. Bows at Θ ≈ 34° and Θ ≈ 120° are clearly visible, with a 
large number of supernumeraries between them. These are the ray 
theory transmission bows of Fig. 5. However, the intensity graph 
cannot distinguish which of these are relative maximum bows and 
which are relative minimum bows. 

The two transmission bows were also studied using time-domain 
scattering in which a Gaussian pulse of full-width 5 fs and centered on λ 
= 0.65 μm is incident on the layered sphere. The time delay of the 
scattered signal was computed as a function of deflection angle [24, 
25]. Time-domain scattering essentially performs a Debye series 
decomposition of the scattered intensity of Fig. 6 since scattered light 
undergoing a larger number of internal reflections is increasingly 
delayed with respect to shorter path length processes such as p = 1 
transmission. The time-domain graph for delay times characteristic of 
transmission are shown in Fig. 7. 

Time-domain scattering easily distinguishes whether the bows are 
relative maximum or relative minimum bows. The ray theory 
signature of these bows is discussed in Appendix A. The bow with Θ ≈ 
34° and a delay time of t ≈ 950 fs is a relative minimum of both the 
deflection angle and the delay time, while the bow with Θ ≈ 120° and t ≈ 
1340 fs is a relative maximum of both. The results of Figs. 6 and 7 
clearly verify that the pair of transmission bows initially predicted 
using ray theory occur as well in wave theory in the short wavelength 
limit 2πa/λ ≫ 1. 

5b. Coalescence of the two bows and overall caustic morphology 

As mentioned above, in Fig. 4(b) the relative maximum and relative 
minimum bows coalesce and then are extinguished when R ≈ 0.32. The 
deflection angle varies over a relatively small range 42.2° ≤ Θ ≤ 42.5° for 
a relatively wide interval of angles of incidence, 38° ≤ θi ≤ 49°, which 
should lead to exceptionally strong scattering in this small deflection 
angle interval. In order to verify this ray theory prediction, Fig. 8 shows 
the TE scattered intensity for λ = 0.65 μm, a = 200 μm, and the 
refractive index profile of Eq. (11) with the parameters of Fig. 4(b) with 
R = 0.32. Again, the Figure contains the contributions of all the Debye 
series terms. But the strong, localized scattering peak at Θ ≈ 42.4°, 
which rises an order of magnitude above the background 



 

Fig. 5.  Ray theory deflection angle Θ as a function of sin(
refractive index profile of Eq. (11) with D = 0.5, R = 0.2, 
0.25. 

Fig. 6. Wave theory TE scattered intensity as a function of 
incident wavelength λ = 0.65 μm, a sphere of radius 
the refractive index profile of Eq. (11) with D = 0.5, R
H = 0.25. The intensity has been “sun-smoothed” by convolving it with 
a 0.5° diameter source to remove the high-frequency 
structure.  

scattered light, is the signature of the two coalesced transmission 
bows. It should also be noticed that this peak is not accompanied by 
supernumeraries. This results from the fact that
supernumeraries were located between the two bows. So as the bows 
coalesce, the supernumeraries between them vanish. 

The five simplest structurally stable optical caustics, the fold, cusp, 
swallowtail, elliptic umbilic, and hyperbolic umbilic have been 
described and illustrated in many places, e.g. [26-30]. In addition, the 
butterfly and parabolic umbilic caustics are described and illustrated in 
[27,28]. The results given in this paper thus far lead to the conjecture 
that the overarching caustic morphology of the two transmission bows 
is that of the cusp caustic rather than the fold caustic.
described in Fig. 12 of [19] in the context of scattering by a generalized 
Luneburg lens. This Figure is adapted to the present situation 
The fold caustic is a function of one control variable, standardly taken 
to be the deflection angle Θ when applied to scattering by a 
homogeneous sphere. There is a supernumerary interference pattern 
to one side of the caustic (i.e. the two-ray region) and no scattered light 
on the other side (i.e. the zero-ray region). 
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a function of Θ for an 
= 0.65 μm, a sphere of radius a = 100 μm, and 

R = 0.2, M = 1.5, and 
smoothed” by convolving it with 

frequency interference 

scattered light, is the signature of the two coalesced transmission 
bows. It should also be noticed that this peak is not accompanied by 
supernumeraries. This results from the fact that in Fig. 6 the 
supernumeraries were located between the two bows. So as the bows 
coalesce, the supernumeraries between them vanish.  

The five simplest structurally stable optical caustics, the fold, cusp, 
umbilic have been 
30]. In addition, the 

butterfly and parabolic umbilic caustics are described and illustrated in 
[27,28]. The results given in this paper thus far lead to the conjecture 

ng caustic morphology of the two transmission bows 
is that of the cusp caustic rather than the fold caustic. This was 
described in Fig. 12 of [19] in the context of scattering by a generalized 
Luneburg lens. This Figure is adapted to the present situation as Fig. 9. 
The fold caustic is a function of one control variable, standardly taken 

when applied to scattering by a 
homogeneous sphere. There is a supernumerary interference pattern 

region) and no scattered light 

Fig. 7. (Color online) Time-domain TE scattering as a function of 
the delay time t for a sphere of radius a = 100 μm, an incident
pulse of 5 fs full-width centered on λ = 0.65 μm, and the refractive 
index profile used in Fig. 6. 

Fig. 8. Wave theory TE scattered intensity as a function of 
incident wavelength λ = 0.65 μm, a sphere of radius 
the refractive index profile of Eq. (11) with 
1.558, and H = 0.142. The large, isolated scattering enhancement 
centered on Θ ≈ 42.4°, without the appearance of a surrounding 
supernumerary interference pattern, is the signature of the 
coalescence of the two transmission bows of Fig. 

 

domain TE scattering as a function of Θ and 
= 100 μm, an incident Gaussian 
= 0.65 μm, and the refractive 

 

Wave theory TE scattered intensity as a function of Θ for an 
= 0.65 μm, a sphere of radius a = 200 μm, and 

the refractive index profile of Eq. (11) with D = 0.3333, R = 0.32, M = 
The large, isolated scattering enhancement 

, without the appearance of a surrounding 
supernumerary interference pattern, is the signature of the 
coalescence of the two transmission bows of Fig. 6. 



 

Fig. 9.  (a) Fold caustic (large dot) and the scattering angle 
number of participating rays for each scattering angle is listed, and the 
shaded region indicates the supernumerary interference pattern. 
Cusp caustic and the Θ and H/R axes. The number of participating rays 
for each scattering angle is listed, and the shaded region indicates 
supernumerary interference pattern. When H/R

refractive index profile of Eq. (11) with D = 0.333, M
0.142, two bows occur at different values of Θ. When 
two bows coalesce at a single value of Θ. When H/
occur. 

The cusp caustic is a function of two control variables, which we 
here take to be the deflection angle Θ and the steepness parameter, 
H/R, of the localized decrease in the refractive index profile.
caustic consists of two curved fold caustics joined together at a cusp 
point. The supernumerary interference pattern of the cusp (i.e. the 
three-ray region) lies inside the cusp, and there is no interference 
pattern outside the cusp (i.e. the one-ray region). When 
the values of D, M, and H considered in Fig. 4, the Θ
caustic twice, exhibiting two bows with the supernumerary 
interference pattern between them. When H/R = 0.44, the 
the cusp caustic at the cusp point, exhibiting a large scattered intensity 
that is not accompanied by supernumeraries. Lastly, when 
the Θ axis no longer cuts the cusp caustic, and exhibits no transmission 
bows. An identical two-bow coalescence phenomenon was 
in [31] for p = 2 scattering by a tilted homogeneous cylinder, where the 
second control variable in that case was the cylinder’s tilt angle with 
respect to the direction of the incident plane wave. 

6. FOUR TRANSMISSION BOWS 

Since a sufficiently steep, localized refractive index
a pair of transmission bows, two localized refractive index decreases 
should be able to lead to two pairs of transmission bows.
tested using the following refractive index profile 

m(w) =  M + 2H1    for 0 ≤ w ≤ 
M + H1 + H1 cos[(w – D1 + R1)π / (2R1)] for D1 – R1 
M    for D1 + R1

M – H2 + H2 cos[(w – D2 + R2)π / (2R2)] for D2 – R2 ≤ 
M – 2H2    for D2 + R2

We used the parameters D1 = 0.333, R1 = 0.083, 
0.167, M = 1.416, H1 = H2 = 0.142 to generate the refractive index 
profile shown in Fig. 10.The first refractive index decrease of 
identical to that used in Eq. (11) and Fig. 4 but with 
which produced a pair of transmission bows. There is now a second 
refractive index decrease following the first decrease, with half the 
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.  (a) Fold caustic (large dot) and the scattering angle Θ axis. The 
ays for each scattering angle is listed, and the 

numerary interference pattern. (b) 
The number of participating rays 

for each scattering angle is listed, and the shaded region indicates the 
R > 0.44 for the 
M = 1.558, and H = 

When H/R = 0.44, the 
/R < 0.44, no bows 

The cusp caustic is a function of two control variables, which we 
and the steepness parameter, 

, of the localized decrease in the refractive index profile. The cusp 
rved fold caustics joined together at a cusp 

The supernumerary interference pattern of the cusp (i.e. the 
ray region) lies inside the cusp, and there is no interference 

When H/R > 0.44 for 
Θ axis cuts the cusp 

caustic twice, exhibiting two bows with the supernumerary 
= 0.44, the Θ axis cuts 

a large scattered intensity 
Lastly, when H/R < 0.44, 

axis no longer cuts the cusp caustic, and exhibits no transmission 
bow coalescence phenomenon was described 

tering by a tilted homogeneous cylinder, where the 
second control variable in that case was the cylinder’s tilt angle with 

Since a sufficiently steep, localized refractive index decrease leads to 
a pair of transmission bows, two localized refractive index decreases 

of transmission bows. This was 

≤ D1 - R1 
 ≤ w ≤ D1 + R1 

1 ≤ w ≤ D2 – R2 
≤ w ≤ D2 + R2 

2 ≤ 1. (26) 
= 0.083, D2 = 0.667, R2 = 

to generate the refractive index 
The first refractive index decrease of Eq. (26) is 

with R = 0.083, and 
There is now a second 

refractive index decrease following the first decrease, with half the 

value of H/R. Substituting this profile into 
resulting deflection angle as a function of the angle of incidence is 
shown in Fig. 11. Two pairs of transmission bows are produced for 
these parameters. The first relative maximum bow A occurs at 
and sin(θi) ≈ 0.51. The first relative minimum bow B occurs at 
and sin(θi) ≈ 0.58. The second relative maximum bow C occurs at 
105° and sin(θi) ≈ 0.84. Finally, the second relative minimum bow D 
occurs at Θ ≈ 28° and sin(θi) ≈ 0.94. If only the first refractive index step 
had been present, the relative maximum bow A would have occurred 
at Θ ≈ 79° and sin(θi) ≈ 0.51, and the relati
have occurred at Θ ≈ 23° and sin(θi) ≈ 0.59.
second refractive index step had been present, the relative maximum 
bow C would have continued to occur at 
and the relative minimum bow D would have continued to occur at 
28° and sin(θi) ≈ 0.94. The presence of the first refractive index 
decrease does not change bows C and D since the rays responsible for 
these bows do not penetrate to the region of the first refractive index 
decrease. But since the rays responsible for bows A and B must cross 
the region of the second refractive index decrease on their way to and 
from the region of the first refractive index decrease, the second 
decrease influences the scattering angle of bows A an

Fig. 10 Refractive index profile given by Eq. (26) using parameters 
0.333, R1 = 0.083, D2 = 0.667, R2 = 0.167, M

Fig. 11. Ray theory deflection angle Θ as a function of sin(
refractive index profile shown in Fig.10. 

In order to verify the four bow prediction of ray theory, Lorenz
scattering was computed for the refractive index profile of Eq. (26) 
with λ = 0.65 μm and a = 100 μm, and is shown in Fig. 
graph includes the contribution from all the Debye series terms.
transmission bow occurs at Θ ≈ 30° which is the relative minimum bow 
D, and a wide bow-like structure is evident for 97
the relative maximum bow C. The two bows A and B with intermediate 
deflection angles are hidden in the complicated supernumerary 
interference pattern between bows D and C.
additional bows, time-domain scattering of a Gaussian pulse of full
width 5 fs and centered on λ = 0.65 μm by an 
inhomogeneous sphere was computed. 

Substituting this profile into Eq. (1), the graph of the 
resulting deflection angle as a function of the angle of incidence is 

of transmission bows are produced for 
The first relative maximum bow A occurs at Θ ≈ 87° 
The first relative minimum bow B occurs at Θ ≈ 34° 
The second relative maximum bow C occurs at Θ ≈ 

Finally, the second relative minimum bow D 
If only the first refractive index step 

had been present, the relative maximum bow A would have occurred 
≈ 0.51, and the relative minimum bow B would 

≈ 0.59. In like manner, if only the 
second refractive index step had been present, the relative maximum 
bow C would have continued to occur at Θ ≈ 105° and sin(θi) ≈ 0.84, 

bow D would have continued to occur at Θ ≈ 
The presence of the first refractive index 

decrease does not change bows C and D since the rays responsible for 
these bows do not penetrate to the region of the first refractive index 

But since the rays responsible for bows A and B must cross 
the region of the second refractive index decrease on their way to and 
from the region of the first refractive index decrease, the second 
decrease influences the scattering angle of bows A and B.  

 

Fig. 10 Refractive index profile given by Eq. (26) using parameters D1 = 
M = 1.416 and H1 = H2 = 0.142. 

 

as a function of sin(θi) for the 
 

In order to verify the four bow prediction of ray theory, Lorenz-Mie 
scattering was computed for the refractive index profile of Eq. (26) 

= 100 μm, and is shown in Fig. 12. As before, the 
ion from all the Debye series terms. A 

which is the relative minimum bow 
like structure is evident for 97° ≤ Θ ≤ 107°, which is 

The two bows A and B with intermediate 
on angles are hidden in the complicated supernumerary 

interference pattern between bows D and C. In order to resolve these 
domain scattering of a Gaussian pulse of full-

= 0.65 μm by an a = 30 μm radially 
 The results are shown in Fig. 



 

13. All four of the transmission bows are now resolved, in agreement 
with the prediction of ray theory. In addition, bows A and C are easily 
recognized as relative maximum bows, and B and D 
recognized as relative minimum bows. 

 

Fig. 12. Wave theory TE scattered intensity as a function of 
incident wavelength λ = 0.65 μm, a sphere of radius 
the refractive index profile used in Fig. 11. The intensity has 
smoothed” by convolving it with a 0.5° diameter source to remove the 
high-frequency interference structure.  

Fig. 13. (Color online)  Time-domain TE scattering as a function of 
and the delay time t for a sphere of radius a = 30 μm, an inciden
Gaussian pulse of 5 fs full-width centered on λ = 0.65 μm, and the 
refractive index profile used in Fig. 11. 

We also investigated the overarching caustic structure of the 
transmission bows associated with the refractive index profile of Eq. 
(26). The fact that zero, two, or four bows are possible by varying 
H1/R1 and H2/R2 initially suggested considering (i) the structurally 
stable elliptic and hyperbolic umbilic and swallowtail
which have three control variables and partition regions containing 
zero, two, or four contributing rays, and (ii) the structurally stable 
butterfly caustic [27] which has four control variables 
regions containing one, three, and five contributing rays. 
caustics is associated with an integral over a phase function, called the 
generating function. The spherical symmetry of a radially 
inhomogeneous refractive index profile dictates that the Lorenz
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We also investigated the overarching caustic structure of the 
transmission bows associated with the refractive index profile of Eq. 

The fact that zero, two, or four bows are possible by varying 
initially suggested considering (i) the structurally 

stable elliptic and hyperbolic umbilic and swallowtail caustics [26-30], 
partition regions containing 

zero, two, or four contributing rays, and (ii) the structurally stable 
four control variables and partitions 

ntributing rays. Each of these 
integral over a phase function, called the 

The spherical symmetry of a radially 
inhomogeneous refractive index profile dictates that the Lorenz-Mie 

scattered fields are a sum (approximated by an integral) over a single 
discrete variable, i.e. the partial wave number (approximated by a 
continuous ray impact parameter). Thus we ruled out the elliptic and 
hyperbolic umbilics because their phase functions are integrated over 
two independent variables  26,27], as occurs for scattering of a p
wave with side-on incidence by an oblate spheroid [
ruled out the swallowtail caustic since it describes the transition from 
three bows to one bow. Although the phase function of the butterfly 
caustic is also integrated over only one independent variable and is cut 
by the Θ axis zero, two, or four times, we were unable to fit the number 
of bows resulting from independent variation of the two steepness 
parameters to the geometric structure of the butterfly caustic.
the independent variations of the two steepness parameters suggested 
a caustic structure that consisted of the direct product of two cusp 
caustics, each extended from two to three dimensions, and intersecting 
each other at an angle of 90°. The two fold lines 
extended into curved planes that have been called fold surfaces [27
29], and the cusp point that joins the pair of folds is extended into a line 
that has been called a rib. For the two intersecting three dimensional 
cusps considered here, the two orthogonal rib lines coincide with the 
H1/R1 and H2/R2 axes, and the Θ axis is perpendicular to them both.
One way of intersecting the two cusps is the double
the 0X9 caustic where the bisector of each of the intersecting cusps 
the Θ direction (see Fig. 5 of [29] and Fig. 1b of [
did not allow for the possibility of the Θ
times, and was thus ruled out. Another way of intersecting the cusps
shown in Fig. 14, is if the one having its rib line along the 
oriented so that its bisector is in the H2/
its rib line along the H2/R2 axis is oriented so that its 
H1/R1 direction. This structure easily conformed to the progression
the number of bows that result as H1/R1

varied through their full ranges. Although this caustic fitting does not 
constitute a proof, we provisionally suggest that this is the overarching 
caustic structure of the bows associated with the refractive index 
profile of Eq. (26).
  

Fig. 14 (Color online) Direct product of two three
caustics. 

scattered fields are a sum (approximated by an integral) over a single 
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each of the intersecting cusps is in 
Fig. 1b of [34]). But this geometry 

Θ axis crossing the caustic zero 
Another way of intersecting the cusps, as 
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/R2 direction, and the one with 
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profile of Eq. (26). 

 

Direct product of two three-dimensional cusp 
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7. CONCLUSIONS 

As was mentioned in Sec. 1, while no transmission bows are 
possible for short wavelength scattering of a plane wave by a 
homogeneous sphere, a number of previous authors have predicted 
the occurrence of various numbers of transmission bows for short 
wavelength scattering of a plane wave by a radially inhomogeneous 
sphere. But in those previous studies, no physical mechanism was 
given for the cause of the bows, and no specific predictions were made 
for the conditions on the refractive index profile under which 
transmission bows can be expected to occur. This study addresses 
these unanswered questions.  

The radially inhomogeneous refractive profile m(w) with w ≡ r/a 
may be that of a particle with m(w) ≥ 1, or a bubble with m(w) ≤ 1. It 
may increase as a function of w with dm/dw > 0, or it may decrease 
with dm/dw < 0. It may be an edgeless particle or bubble with m(1) = 
1, or a hard-edge particle or bubble with m(1) ≠ 1. The function η(w) = 
w m(w) may be monotonically increasing over a particular range of η, 
or it may not. In light of the investigations reported here, we feel that it 
is not possible to provide a single universal rule giving the number of 
transmission bows that will occur for any given refractive index profile. 
Rather, we believe the problem must be broken into a number of 
refractive index equivalence classes that are then each examined 
individually.  

In this study we have focused on the class m(w) > 1, dm/dw < 0, and 
η(w) being monotonically increasing for 0 ≤ η ≤ 1. For this class of 
refractive index profiles, transmission bows occur only in pairs, a 
relative maximum bow followed by a relative minimum bow. 
Depending on the number of isolated regions of refractive index 
decrease and on the steepness of the decrease in each region, no pairs, 
one pair, two pairs, etc., can occur. Relative maximum bows were 
found to occur for rays that penetrate to the steepest part of the region 
of refractive index decrease, and correspond to the near-onset of the 
classical phenomenon of orbiting. Relative minimum bows were found 
to occur for rays that just start to penetrate into the region of refractive 
index decrease. They correspond to increased refraction in that region 
when compared to the lesser refraction that would have been 
experienced by rays had the refractive index increase not occurred 

Similar results, mentioned at the end of Sec. 2, were obtained for a 
number of other refractive index equivalence classes. Using the 
method of analysis described here, predictions of the number of bows 
may also be made for families of rays that undergo one or more 
internal reflections before exiting the sphere. The transmission bows 
for short wavelength scattering predicted in the context of ray theory 
also are predicted to occur in wave scattering, both in the frequency-
domain and in the time-domain. 
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APPENDIX A. SIGNATURE OF BOWS IN TIME-DOMAIN 

SCATTERING 

The ray theory deflection angle for transmission scattering is given 
in Eq. (1). Let L(θi) be the optical path length of the ray trajectory 
divided by the sphere radius, measured from the entrance plane of the 
sphere to its exit plane. Also let (r,ξ) be the polar coordinates of a point 
on the ray trajectory with respect to the center of the sphere, and let ds 
be the differential arc length along the trajectory divided by the sphere 
radius. Then  

L(θi) = ∫ m ds = ∫ m(w) (ds/dξ) (dξ/dw) dw .  (A1) 
 

From [14] one has 
dw/dξ = [w / sin(θi)] [η2(w) – sin2(θi)]1/2 .  (A2) 
Substituting Eq. (A2) into Eq. (A1) along with the standard formula 

for the arc length in polar coordinates, adding and subtracting sin2(θi) 
to the numerator factor of the resulting expression, and then 
substituting Eq. (1) into the result, one gets 

     1 
L(θi) = 2 – 2 cos(θi) + sin(θi) [Θ(θi) + π - 2θi] + 2 ∫ (dw/w) [η2(w) – 

     wT 
 sin2(θi)]1/2 .      (A3) 
Taking into account the θi dependence of the lower limit of 

integration in Eq. (A3), and assuming that orbiting does not occur, 
(dη/dw)wT ≠ 0, the derivative of Eq. (A3) is 

(dL/dθi) = sin(θi) (dΘ/dθi) .    (A4) 
For the occurrence of a transmission bow at θi = θiR, both the 

deflection angle and the optical path length are then simultaneous 
extrema. Taking the derivative of Eq. (A4) one obtains 

(d2L/dθi2) = cos(θi) (dΘ/dθi) + sin(θi) (d2Θ/dθi2)  . (A5) 
Evaluating Eq. (A5) at the rainbow condition gives  
(d2L/dθi2)R = sin(θiR) (d2Θ/dθi2)R  .   (A6) 
Thus the simultaneous extrema are both either relative maxima or 

relative minima. 
One can Taylor series expand both Θ and L about their values ΘR and 

LR at a transmission bow, obtaining 
(Θ – ΘR) = a2 (θi - θiR)2 + a3 (θi - θiR)3 + O(θi – θiR)4  ,  (A7) 
(L – LR) = b2 (θi - θiR)2 + b3 (θi - θiR)3 + O(θi – θiR)4  .  (A8) 
Assume that Θ and L are both relative minima at the bow, so that a2 

> 0, b2 > 0, and a3 and b3 can be either positive or negative. If the second 
term on the right hand side of Eq. (A7) is much smaller than the first 
term, Eq. (A7) can be approximately inverted in the vicinity of the bow 
to give 

(θi – θiR) = ± [(Θ – ΘR) / a2]1/2 – [a3 / (2a22)] (Θ – ΘR) + O(Θ – ΘR)3/2 
      (A9) 

Substituting Eq. (A9) into Eq. (A8) we obtain 
(L – LR) = (b2 / a2) (Θ – ΘR) ± [(b3a2 – b2a3) / a25/2] (Θ – ΘR)3/2  

        +  O(Θ – ΘR)2  .      (A10) 
The second term on the right hand side of Eq. (A10) is a cusp about 

the diagonal line given by the first term. Since the delay time for time-
domain scattering is  

t = L / c      (A11) 
where c is the speed of light in the external medium, Eq. (A10) 
describes the cusp structures in the vicinity of the bows in the time-
domain trajectories shown in Figs. 7 and 13. Similarly, if both Θ and L 
are relative maxima at the transmission bow, then 

(L – LR) = (b2 / a2) (Θ – ΘR) ∓ [(b3a2 – b2a3) / a25/2] (Θ – ΘR)3/2  
       +  O(Θ – ΘR)2  ,      (A12) 
which is again a cusp about the diagonal line given by the first term of 
Eq. (A12). Finally, it should be noted that a2, b2, a3, and b3 are 
proportional to the second and third derivatives of Θ and L evaluated at 
the bow. Making these substitutions, defining  

h ≡ (d2Θ/dθi2)R / [2 cos2(θiR)] ,   (A13) 
and substituting the results into Eq. (A10), the phase of the rays in the 
vicinity of the bow from the sphere’s entrance plane to its exit plane is 

Φ(Θ) = ka L(Θ) = ka [LR + sin(θiR) (Θ – ΘR) ± (2/3) h-1/2 (Θ – ΘR)3/2  
       +  O(Θ – ΘR)2] .      (A14) 

This has the same functional dependence as the phase of the two 
supernumerary rays in the two-ray limit of Airy theory that flank the 
(p-1)-order rainbow of a homogeneous sphere (see Eqs.(4, 24, 25) of 
[9], Eqs.(6.24, 6.31) of [10], and Eqs.(10, 16) of [35]). The Airy theory 
scattered electric field for a radially inhomogeneous sphere has been 
derived as an approximation to the exact wave theory solution to the 
electromagnetic boundary value problem and will be published 
separately. The value of h obtained in that analysis agrees with Eq. 
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(A13), and the conjectured overall caustic morphology of Figs. 6, 8 and 
illustrated in Fig. 9 is derived. 

REFERENCES 

1.  C. F. Bohren and A. B. Fraser, “Newton’s zero-order rainbow: 

Unobservable or nonexistent?” Am. J. Phys. 59, 325-326 (1991). 

2.  A. E. Shapiro, “Comment on ‘Newton’s zero-order rainbow: 

Unobservable or nonexistent?’” Am. J. Phys. 60, 749-750 (1992). 

3.  J. A. Lock and T. A. McCollum, “Further thoughts on Newton’s zero-

order rainbow,” Am. J. Phys. 62, 1082-1089 (1994). 

4.  J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. II. 

Transmission and cross-polarization effects,” Appl. Opt. 35, 515-531 

(1996). 

5.  W. S. Jagger, “The optics of the spherical fish lens,” Vision Res. 7, 1271-

1284 (1992). 

6.  J. A. Adam and P. Laven, “Rainbows from inhomogeneous transparent 

spheres: A ray-theoretic approach,” Appl. Opt. 46, 922-929 (2007). 

7.  J. A. Adam, “Zero-order bows in radially inhomogeneous spheres: 

Direct and inverse problems,” Appl. Opt. 50, F50-F59 (2011). 

8.  J. A. Lock, P. Laven, and J. A. Adam, “Scattering of a plane 

electromagnetic wave by a generalized Luneburg sphere-Part 1: Ray 

theory,” J. Quant. Spectrosc. Radiat.Transfer 162, 154-163 (2015). 

9.  K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” 

Ann. Phys. (N.Y.) 7, 259-286 (1959). 

10. M. V. Berry and K. E. Mount, “Semiclassical approximations in wave 

mechanics,” Rep. Prog. Phys. 35, 315-397 (1972). 

11. H. Goldstein, Classical Mechanics, second ed., (Addison-Wesley, 

Reading MA, 1980), pp. 111-112. 

12. N. F. Mott and H. S. W. Massey, The theory of atomic collisions, 

(Clarendon Press, Oxford U.K., 1987), pp. 106-110. 

13. R. G. Newton, Scattering Theory of Waves and Particles, (McGraw-Hill, 

New York, 1966), pp. 581-582. 

14. M. Born and E. Wolf, Principles of Optics, sixth ed., (Cambridge U. Press, 

Cambridge U.K., 1998) pp. 123-124. 

15. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering, 

(Cambridge U. Press, Cambridge U.K., 1992), p.2. 

16. J. O. Hirschfelder, C.F. Curtis, and R.B. Bird, Molecular Theory of Gases 

and Liquids, (Wiley, New York, 1954), pp. 552-557. 

17. K. W. Ford and J. A. Wheeler, “Application of semiclassical scattering 

analysis,” Ann. Phys. (N.Y.) 7, 287-322 (1959). 

18. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg 

lens. II. Wave theory,” J. Opt. Soc. Am. A 25, 2980-2990 (2008). 

19. J. A. Lock, P. Laven, and J.A. Adam, “Scattering of a plane 

electromagnetic wave by a generalized Luneburg sphere-Part 2: Wave 

scattering and time-domain scattering,” J. Quant. Spectrosc. 

Radiat.Transfer 162, 164-174 (2015). 

20. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg 

lens. I. Ray theory,” J. Opt. Soc. Am. A 25, 2971-2979 (2008). 

21. P. Pechukas, “Time-dependent semiclassical scattering theory. I. 

Potential scattering,” Phys. Rev. 181, 166-174 (1969). 

22. J. A. Lock, “Debye series analysis of scattering of a plane wave by a 

spherical Bragg grating,” Appl. Opt. 44, 5594-5603 (2005). 

23. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg 

lens. III. Finely stratified sphere model,” J. Opt. Soc. Am. A 25, 2991-

3000 (2008). 

24. P. Laven, “Separating diffraction from scattering: The million-dollar 

challenge,” Journ. Nanophotonics 4, 041593 (2010). 

25. P. Laven, “Time domain analysis of scattering by a water droplet,” Appl. 

Opt. 50, F29-F38 (2011).  

26. M. V. Berry, “Waves and Thom’s theorem,” Adv. Phys. 25, 1-26 (1976). 

27. M. V. Berry and C. Upstill, “Catastrophe optics: Morphologies of 

caustics and their diffraction patterns,” Prog. Opt. 18, 257-346 (1980). 

28. J. Walker, “Caustics: mathematical curves generated by light shined 

through rippled plastic,” Sci. Am. 249, 190-202 (1983). 

29. F. Wright, “Catastrophe optics,” Phys. Bulletin 39, 313-316 (1988). 

30. P. L. Marston, “Geometrical and catastrophe optics methods in 

scattering,” Phys. Acous. 21, 1-234 (1992). 

31. J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order 

rainbow produced in scattering of a diagonally incident plane wave by a 

circular cylinder,” J. Opt. Soc. Am. A 14, 1316-1328 (1997). 

32. P. L. Marston and E. H. Trinh, “Hyperbolic umbilic diffraction 

catastrophe and rainbow scattering from spheroidal drops,” Nature 

312, 529-531 (1984). 

33. J. F. Nye, “Rainbow scattering from spheroidal drops – an explanation 

of the hyperbolic umbilic foci,” Nature 312, 531-532 (1984). 

34. C. Upstill, F. J. Wright, J. V. Hajnal, and R. H. Templer, “The double-cusp 

unfolding of the 
0
X9 diffraction catastrophe,” Opta Acta 29, 1651-1676 

(1982). 

35. M. V. Berry, “Uniform approximation for potential scattering involving 

a rainbow,” Proc. Phys. Soc. 89, 479-490 (1966).  


