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Abstract. Craig Bohren has offered a million-dollar prize to anyone who can devise a 
detector that accepts scattered light but rejects diffracted light. This challenge was examined 
from a theoretical perspective by considering the scattering of red light by a spherical droplet 
of water with diameter 20 µm. Illumination of the droplet by short pulses (e.g. a duration of 5 
fs) could allow a detector to distinguish between light scattered by various mechanisms, such 
as diffraction, transmission, reflections and surface waves. Although such techniques would 
not satisfy the precise terms of the challenge, the time domain approach can deliver 
remarkable insights into the details of the scattering processes 
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1   INTRODUCTION 

Craig Bohren recently sent me an e-mail which included the sentence “For many years I have 
offered a million-dollar prize to anyone who can devise a detector that accepts scattered light 
but rejects diffracted light.” On the basis that it is possible to win a lottery (even if it is highly 
unlikely), Craig’s e-mail made me wonder if his million-dollar challenge was as impossible as 
it seemed. I started by assuming that the formal rules for claiming the prize were defined by 
the statement on page 126 of the book Fundamentals of Atmospheric Radiation by Bohren 
and Clothiaux [1], as reproduced below: 
 

“For many years we have offered a million-dollar prize to anyone who can devise a 
detector that distinguishes between scattered and diffracted waves, accepting the one but 
rejecting the other.” 
 
An immediate issue is that, in my opinion, “scattering” is a generic term that includes all 

manner of scattering mechanisms, such as diffraction, reflection, transmission, surface waves, 
etc. Hence, using my own definition, the challenge is impossible. On the other hand, as the 
challenge is about physics (rather than about semantics), I assumed that the task actually 
involves separating the diffracted components from those components that have been 
scattered by any mechanism other than diffraction. 

This paper explores the problems set by the challenge and suggests a possible partial 
solution. 

All of the graphs and diagrams in this paper have been generated using the MiePlot 
computer program which is freely available from http://www.philiplaven.com/MiePlot.htm. 
This program was originally developed to provide a user-friendly interface to Bohren & 
Huffman’s code known as BHMIE [2] for the specific purpose of investigating scattering of 
light by droplets of water in the atmosphere. Hence, this paper uses the example of scattering 
of red light by a spherical water droplet of 20 µm diameter. 
 

mailto:philip@philiplaven.com
http://www.philiplaven.com/MiePlot.htm
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2   ANALYZING THE PROBLEM 

2.1 Lorenz-Mie theory and the Debye series 

To investigate this problem, I decided to consider scattering by a spherical droplet of water of 
diameter d = 20 µm. The results of calculations based on Lorenz-Mie theory (LMT) for the 
scattering of red light (λ = 650 nm) are shown in Fig. 1 – which shows that the maximum 
intensity of scattering occurs when the scattering angle θ = 0° (corresponding to forward 
scattering). 

 
 

Fig. 1. LMT calculations for scattering of red light (λ = 650 nm) by a spherical homogeneous drop of 
water of diameter d = 20 µm (refractive index of sphere n1 = 1.3326 + i 1.67E-08) in a medium with 

refractive index n0 = 1. 
 

The complicated ripples shown in Fig. 1 indicate that scattering by a sphere is not a simple 
process. However, as an aid to understanding Fig. 1, it is useful to introduce the Debye series 
[3, 4, 5] – which is essentially a reformulation of LMT separating the contributions made by 
different scattering mechanisms of order p (see Fig. 2), where: 

• p = 0 corresponds to external reflection plus diffraction; 
• p = 1 corresponds to direct transmission through the sphere; 
• p = 2 corresponds to one internal reflection; 
• p = 3 corresponds to two internal reflections; and so on . . . 

 
Fig. 2. Geometrical ray paths corresponding to scattering orders p = 0, 1, 2 and 3. 
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Comparing the results of Debye series calculations in Fig. 3 with the LMT calculations in 
Fig. 1, it will be noted that p = 0 scattering (i.e. external reflection plus diffraction) is 
responsible for the forward scattering peak as θ → 0°. Similarly, p = 2 scattering (one internal 
reflection) is responsible for the primary rainbow at θ ≈ 142°, whilst p = 3 scattering (two 
internal reflections) is responsible for the secondary rainbow at θ ≈ 124°. Note that the 
primary and secondary rainbows are not well-defined in terms of scattering angle θ – even for 
scattering of monochromatic light. When sunlight is scattered by water droplets with d < 40 
µm, the resulting rainbows are almost white – and are known as fogbows or cloudbows. 
Scattering of sunlight by larger drops of water, such as d > 200 µm, produces the familiar 
colored primary and secondary rainbows (with red arcs at θ ≈ 138° and θ ≈ 129° respectively). 
 

 
 

Fig. 3. As Fig. 1, but showing the results of calculations using the Debye series for selected values 
of p. The curves for perpendicular polarization are marked with the symbol ⊥⊥⊥⊥, whilst the 
curves for parallel polarization are marked with //. 

 
 

 
 
Fig. 4. As Fig. 1: the red lines show the results of LMT calculations, whilst the blue lines show the 

vector sum of the Debye series results for p = 0 through p = 7 (i.e. pmax = 7). 
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It should be noted that the Debye series is not an approximation. The sum of the Debye 
series for all integer values of p from p = 0 to p = ∞ gives the same result as calculations 
based on LMT. In practice, this vector sum can generally be safely truncated at a much lower 
value of p, as shown in Fig. 4 where the blue curves representing the combined intensity of 
the Debye results for p = 0 through p = 7 have been superimposed on the red curves 
representing the LMT results. In this case, truncating the sum at pmax = 7 gives results very 
close to the LMT results, whilst increasing pmax to 12 gives results that are essentially identical 
to the LMT results. The Appendix gives further information about the Debye series. 

2.2 Fraunhofer approximation and ray-tracing 

The separation provided by the Debye series might be part of the solution to the challenge, 
except for the awkward fact that the Debye p = 0 term combines diffraction with reflection 
from the exterior of the sphere. As the challenge involves “diffraction”, it is important to be 
clear about the meaning of diffraction. In the case of scattering by a spherical particle, the 
diffraction pattern is typically defined by the Fraunhofer approximation [2, 6, 7]: 

 

                (1) 
where: 
• S(θ) is the amplitude of the scattered field at scattering angle θ; 
• J1 is the first-order Bessel function; 
• x = 2π r/λ where r is the radius of the scattering sphere and λ is the wavelength 

of the incident light. 
 

Such equations are frequently attributed to Fraunhofer, but Craig Bohren has pointed out 
in a private communication that, without diminishing the importance of Fraunhofer’s 
pioneering work in experimental optics, there is no evidence to suggest that Fraunhofer 
developed any theoretical treatment of diffraction. Consequently, he has suggested that 
“Fresnel-Fraunhofer-Airy-Schwerd” might be a more appropriate designation.  

The essence of the challenge is shown in Fig. 5 which plots results of calculations for 
three distinct scattering mechanisms: 

• diffraction (calculated using Fraunhofer’s approximation, Eq. (1)); 
• p = 0 reflection from the exterior of the sphere (calculated using ray-tracing and 

Fresnel’s equations); 
• p = 1 transmission through the sphere (calculated using ray-tracing and Fresnel’s 

equations). 
 

Fig. 6 compares the vector sum of the Fraunhofer approximation and the p = 0 reflection 
term shown in Fig. 4 (taking phase differences into account) with the results of Debye p = 0 
calculations (which combine diffraction and reflection from the exterior of the sphere). 
Although the two curves in Fig. 6 show good agreement between for the first few maxima and 
minima (i.e. for θ < 10°), the significant discrepancies at higher values of θ (particularly the 
larger amplitudes of the ripple on the blue curve) suggest that the Fraunhofer approximation 
over-estimates the intensity of the diffracted component beyond the first few maxima. 

Figs. 3 and 5 indicate that diffraction is the dominant mechanism causing forward 
scattering (e.g. 0° < θ < 1°), whilst transmission through the sphere (p = 1) is dominant when 
10° < θ < 30°. Unfortunately, vague phrases such as “dominant” are not sufficient to satisfy 
any challenge which demands complete “separation” of scattering mechanisms. 
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Fig. 5. As in Fig. 1 (limited to 0° < θ < 30°), but using the Fraunhofer approximation for diffraction 
shown in Eq. (1), ray-tracing for reflection from the exterior of the sphere (p = 0) and ray-tracing for 
transmission through the sphere (p = 1). The curves for perpendicular polarization are marked with 
the symbol ⊥⊥⊥⊥, whilst the curves for parallel polarization are marked with the symbol //. 

 
 

 
 

Fig. 6. Scattering for the same conditions as in Fig. 5, but comparing the results of calculations based 
on the Fraunhofer approximation for diffraction and ray-tracing for reflection from the exterior of the 
sphere (p = 0) with the results of Debye p = 0 calculations (perpendicular polarization only). 

 
Although the above results show that it is possible identify the contributions caused by 

different scattering mechanisms, Bohren’s challenge would not be satisfied by a mathematical 
construct. It demands a measurement technique that will reveal the intricate details of the 
scattering processes, but there seems to be little hope of success because scattering at a given 
angle θ is due to a combination of scattering mechanisms. 

Despite this apparently insuperable problem, is it possible to devise a measurement 
technique that could, in some way, replicate the theoretical results of the Debye series? 
Ideally, the intensity of the various scattering mechanisms should be retrieved directly from 
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measurements – even if the intensity at a given angle θ for a specific scattering mechanism is 
much weaker than the dominant scattering mechanism. Taking the example of Fig. 5, this 
implies the need for direct measurements of ALL three scattering mechanisms for 0 < θ < 30°. 
This objective is potentially much more difficult than Craig Bohren’s challenge of separating 
the diffracted and non-diffracted components. 

 

 
 

Fig. 7.  Geometric rays that result in counter-clockwise deviation of 20° for a sphere with refractive 
index n1 = 1.3326 in a medium with refractive index n0 = 1 for p = 0 through p = 4. 

 
A beam of light can be considered as a set of parallel rays – as shown in Fig. 7 which 

selects a few rays from the incident beam of light that are deviated by an angle of 20° in a 
counter-clockwise direction. Table 1 shows the characteristics of the propagation paths for 
each of the rays. The impact parameter b measures the perpendicular distance of the path of 
an incident ray from the center of the scattering sphere: for example, an impact parameter b = 
0 corresponds to an incident ray aimed at the center of the sphere, whilst an impact parameter 
b = ± 1 corresponds to an incident ray that is tangential to the top or bottom of sphere. Each of 
the rays shown in Fig. 7 suffers a delay dependent on its propagation path through the sphere. 
Table 1 shows the calculated time τ in femtoseconds (1 fs = 10-15s) taken by each ray to travel 
between the dashed reference lines on the left and right of the sphere (for a spherical droplet 
of water with diameter d = 20 µm). 

 
Ray p Impact parameter b Time delay τ (fs) 

A 0 0.9848 55.1 
B 1 -0.5953 92.6 
C 3 0.1394 265.7 
D 4 0.8472 305.5 
E 4 -0.6809 323.3 

 
Table 1 Propagation parameters for each of the rays shown in Fig. 7  

for a water droplet with diameter d = 20 µm. 
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2.3   Calculations in the time domain 

The values of τ listed on Table 1 suggest a way of identifying the various contribution to 
scattering at θ = 20°. Instead of illuminating a sphere with a light source of constant intensity, 
the sphere could be illuminated by an extremely short pulse of light so that a detector at  
θ = 20° could measure the resulting impulse response.  

Such measurements would not necessarily be easy to perform, but I have recently 
extended the MiePlot computer program to calculate the impulse response of a sphere (based 
on the work of Bech & Leder [8, 9]). This program first performs a Fast Fourier Transform 
(FFT) on the pulse shape in the time domain to determine the spectrum of the pulse, which is 
then multiplied by the results of scattering calculations for a range of scattering angles θ at a 
number of discrete wavelengths across the bandwidth of the pulse. The results for a given 
value of θ as a function of wavelength are then subjected to another FFT so as to produce the 
time domain impulse response for that value of θ.  

 

 
 

Fig. 8 Impulse response of a spherical droplet of water (d = 20 µm) for a 5 fs pulse of red light for 
scattering angles θ = 10°, 15° and 20° (taking account of dispersion). 

 

 
 

Fig. 9 Impulse response of a spherical droplet of water (d = 20 µm) for a 5 fs pulse of red light for 
scattering angle θ = 20° (assuming fixed refractive index n1 = 1.3326 + i 1.67E-08). 
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The graphs in Fig. 8 show the calculated impulse responses using LMT for scattering 
angles θ = 10°, 15° and 20° for the following conditions: 

• Nominal wavelength λ = 650 nm 
• Pulse duration: 5 fs (half-amplitude duration, raised-cosine pulse shape) 
• Pulse bandwidth: 564 nm – 767 nm (-3 dB); 404 nm – 1664 nm (-40 dB)   
• Sphere diameter: d = 20 µm  
• Refractive index of sphere: n1 = 1.3326 + i 1.67E-08 at nominal wavelength λ = 650 

nm (N.B. The real part of the refractive index of water is 1.344 at 404 nm and 1.313 
at 1664 nm, whilst the imaginary part is negligible for the current purposes.) 

• Refractive index of medium: n0 = 1 
The various pulses shown in Fig. 8 can be identified by separate calculations using the 

Debye series. In particular, each graph shows two pulses labeled “p = 0”. As θ is increased 
from 10° to 20°, the first pulse moves from τ ≈ 61 fs to τ ≈ 55 fs, whereas the second pulse 
moves from τ ≈ 72 fs to τ ≈ 78 fs. By default, the MiePlot program takes account of variations 
of refractive index of water across the bandwidth of the pulse, but to facilitate comparisons 
with the results in Table 1, Fig. 9 shows the impulse response for θ = 20° assuming a constant 
value of refractive index (whereas Fig. 8 takes account of dispersion). Note that the letters A 
to E in Fig. 9 correspond to the geometric rays shown in Fig. 7. Examination of the results for 
θ = 20° in Fig. 8 and 9 shows that the pulses for p > 0 in Fig. 8 have been broadened and 
shifted by dispersion. 

The close agreement between the values of τ given by the various independent methods of 
calculation (i.e. LMT, Debye and ray-tracing) gives considerable confidence in the results. 
However, it is also important to recognize that some of the scattered pulses shown for θ = 20° 
in Fig. 9 were not predicted by the ray-tracing exercise in Fig. 7 – for example, there is an 
extra p = 0 pulse at τ ≈ 78 fs and an extra p = 4 pulse at τ ≈ 330 fs. 

What causes these “non-geometrical” pulses? The fact that the p = 4 pulse at τ ≈ 330 fs is 
dominated by parallel polarization suggests the involvement of surface waves – which are 
typically generated by rays with impact parameter b = 1 or b = -1. Fig. 10(a) shows a ray with 
impact parameter b = 1 suffering 3 internal reflections before generating a surface wave 
which travels 9° clockwise along the circumference of the sphere, resulting in scattering at θ = 
20° with τ = 306.8 fs. As this delay is extremely close to that of geometrical ray D (τ = 305.5 
fs), it is not possible to distinguish between these two propagation paths with a pulse of 5 fs 
duration. However, as shown by Fig. 10(b), there is another p = 4 path involving surface 
waves: in this case, a ray with impact parameter b = -1 suffers 3 internal reflections before 
generating a surface wave which travels 49° counterclockwise along the circumference of the 
sphere, resulting in scattering at θ = 20° with τ = 330.1 fs – which agrees well with LMT 
results in Fig. 9. The ray paths shown in Figs. 10(a) and (b) are not symmetrical because the 
lengths of arc travelled by the surface waves are different. The path shown in Fig. 10(b) is 40° 
of arc longer than the path shown in Fig. 10(a). Note that the path difference between the 
“long” and “short” paths is equivalent to 2 θ: this relationship is valid for all values of θ. 

An explanation for the p = 0 pulse at τ ≈ 78 fs is now needed. The p = 0 ray in Fig. 7 is 
due only to external reflection from the sphere, whereas the Debye p = 0 term also includes 
diffraction. As diffraction is typically explained as a wave phenomenon (in which the far field 
can be considered as the interference pattern due to, for example, a uniformly illuminated 
disk), diffraction cannot be represented by a single ray – unlike the other scattering 
mechanisms shown in Fig. 7 or Fig. 10. 

Instead of just examining the impulse response at specific values of scattering angle θ, 
much more information is revealed by studying how the impulse response varies with θ, as 
shown in Fig. 11 (for the above listed conditions). In Fig. 11, the intensity of the scattered 
pulses is coded according to the false-color scale shown above the diagram. The maximum 
intensity occurs for p = 0 at θ = 0° and τ ≈ 67 fs. Note the time reference (τ = 0) corresponds 
to reflection from the exterior of the sphere at θ = 180°. 
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(a) 

 

 
(b) 

 
Fig. 10. Scattering at θ = 20° caused by p = 4 rays and surface waves for n1 = 1.3326: 

a) impact parameter b = 1 with a surface wave travelling 9° clockwise; 
b) impact parameter b = -1 with a surface wave travelling 49° counterclockwise. 

 
Note that, in both (a) and (b), the incident ray is tangential to the surface at point A, where it enters the 
sphere and then suffers internal reflections at B, C and D. Ray-tracing suggests that the p = 4 ray would 
leave the sphere at point E along the tangential black lines corresponding to θ = 29° in (a) and at θ = -
29° in (b). However, surface waves can travel from E to F along the circumference of the sphere before 
following the tangential red lines at F at the desired value of θ = 20°. 
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Fig. 12 shows the results of Debye series calculations for p = 0 and p = 1 scattering. It also 
refers to ray-tracing calculations for reflection from the exterior of the sphere (p = 0): the 
latter results are shown as a parametric curve plotting scattering angle θ against time delay τ 
for various values of the impact parameter b: 

• when p = 0 and b = 0 (i.e. a central ray), θ = 180° and τ = 0; 
• when p = 0 and b = 1 (i.e. an edge ray), θ = 0° and τ = d (n0 / c), where d is the 

diameter of the sphere, c is the speed of light in vacuo and n0 is the refractive index 
of the medium.  In this particular case, τ = d (n0 / c) ≈ 66.67 fs. 

 
The pulses due to p = 1 scattering (i.e. transmission through the sphere) are delayed 

relative to the p = 0 pulses: when θ = 0°, the p = 1 pulse occurs at τ = d (n1 / c) where n1 is the 
refractive index of the sphere: in this case, τ = d (n1 / c) ≈ 88.84 fs. 

Figs. 11 and 12 demonstrate that it is possible to retrieve the intensities of the various 
scattering mechanisms by direct measurement of the impulse response at a given scattering 
angle.  This goes even further than the mathematical approach of the Debye series because 
scattering for a given value of p often involves a mixture of several ray paths (each of which 
results in a distinctive pattern on diagrams such as Fig. 11). For example, the complicated 
pattern of the p = 2 curves in Fig. 11 can be used to identify the contributions of geometrical 
rays and surface waves. 

Fig. 13 shows the results of ray-tracing calculations for p = 0. In this case, the only 
scattering mechanism considered is that of reflection from the exterior of the sphere. This plot 
is comparable to the left part of the p = 0 curve in Fig. 12. Despite their similarity, these two 
curves are slightly different when θ approaches 0°. To investigate these differences, the 
Fraunhofer approximation Eq. (1), has been used to produce Fig. 14, which surprisingly 
shows that “diffraction” produces a pattern that is symmetrical around τ = 66.67 fs. The 
approximate nature of Eq. (1) is highlighted by the fact that the value of τ seems to reach an 
inflection point at θ = 90°, whereas calculations using the Debye series for p = 0 indicate a 
linear relationship between τ and θ even when θ > 90°. In any event, the Fraunhofer 
approximation is unlikely to be valid when θ > 90°. 

Fig. 13 indicates that the first p = 0 pulse is due to reflection from the exterior of the 
sphere, but what about the second p = 0 pulse highlighted by the dashed line in Fig. 12?  I 
suggest that the second p = 0 pulse is exclusively the result of diffraction. As this second p = 
0 pulse can be isolated by accepting only signals with 66.67 fs < τ < 88.84 fs, I contend that it 
is possible to separate the diffracted component of the scattered signal.  

The results in Fig. 14 indicate that the p = 0 results shown in Fig. 10 for τ > 66.67 fs are, 
indeed, due to diffraction. However, Fig. 14 also shows that some of the p = 0 results shown 
in Fig. 12 for τ < 66.67 fs are not solely due to reflection from the exterior of the sphere 
(because the impulse response for p = 0 scattering in this region represents a mixture of 
diffraction and external reflection). 

This mixture of scattering mechanisms disqualifies my attempt to claim the million-dollar 
prize. Even so, given the symmetry around τ = 66.67 fs in Fig. 14, it would be possible to 
determine indirectly the intensity of the total diffracted signal, which corresponds to double 
that of the diffracted signal measured in the range τ > 66.67 fs. 

Interestingly, if the diffraction calculation is repeated using a 50 fs pulse (rather than the 5 
fs pulse used in the above graphs), a very different pattern emerges, as shown in Fig. 15. Note 
that Fig. 15 covers a limited range of scattering angles (0° – 30°) rather than the 0° – 180° 
range of the previous figures – thus showing that the resulting diffraction pattern has maxima 
and minima identical to those shown for diffraction in Fig. 5. 

The impulse response techniques described in this section are, in principle, applicable to 
any size of sphere: instead of using 5 fs pulses with spheres of 20 µm diameter, 50 fs pulses 
would give similar results with 200 µm diameter spheres. However, 200 nm diameter spheres 
would require pulses of 0.05 fs = 50 attoseconds duration – which would be very challenging! 
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Fig. 11. Impulse response as a function of scattering angle for scattering of red light from a water droplet 

of diameter d = 20 µm. 
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Fig. 12. Enlarged portion of Fig. 11 showing only p = 0 and p = 1 scattering. 
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Fig. 13. As Fig. 12 but showing only the results for ray-tracing for p = 0  

(corresponding to reflection from the exterior of the sphere). 
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Fig. 14. As Fig. 12, but showing only the results for Fraunhofer approximation for diffraction. 
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Fig. 15.  Fraunhofer approximation for diffraction (as in Fig. 14 but with a pulse of 50 fs duration). 
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3   CONCLUSIONS 

The million-dollar challenge set by Craig Bohren involves devising “a detector that 
distinguishes between scattered and diffracted waves, accepting the one but rejecting the 
other.” This paper has analyzed this challenge from a theoretical perspective, using the 
example of scattering of red light from a spherical water droplet of diameter d = 20 µm. 
Although calculations using the Debye series can separate the contributions made by 
scattering of order p, Debye series calculations for p = 0 combine diffraction with reflection 
from the exterior of the sphere. Nevertheless, the results show that measurements in the time 
domain (i.e. by measuring the impulse response due to the scattering of extremely short pulses 
of light) can distinguish between various scattering mechanisms, such as diffraction, 
transmission, reflections and surface waves. Unfortunately, these calculations also show that, 
for forward scattering, the time delays due to reflection from the exterior of the sphere are 
almost identical to the time delays for part of the diffracted signal. Consequently, as it does 
not seem possible to achieve complete separation of the diffracted signals (even with a pulse 
duration as short as 5 fs), this paper must record my failure to satisfy the challenge. 

Despite this failure, the paper suggests that the intricacies of scattering can be revealed by 
considering the time domain (i.e. scattering of short pulses of light), instead of the usual 
assumption of a constant source of light. Measurements of the impulse response of a small 
sphere might be difficult to achieve in practice, but computer programs can produce detailed 
simulations of such measurements – thus achieving results that, in some ways, are more 
ambitious than Bohren’s million-dollar challenge. 

I am sure that Craig Bohren never expected serious attempts to solve his challenge – but, 
like most of us, he had not given sufficient consideration to the time domain concept of 
scattering. Even so, his million-dollar prize seems safe for the time being! 

APPENDIX: THE DEBYE SERIES 

Although the title of Debye’s 1908 paper [3] refers to the “theory of the rainbow”, it was 
primarily concerned with scattering from a cylinder. Debye did point out that “the extension 
to spheres is possible in an analogous way without difficulty” but this extension does not 
seem to have been addressed until 1937 when van der Pol and Bremmer tackled the problem. 
[4]. 
 
The amplitude of the scattered field at scattering angle θ is given by LMT as: 
 

     (A.1) 

    (A.2) 
 
In the Debye series expansion, the values of an and bn are re-defined as: 

   (A.3) 
 

   (A.4) 
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The terms Rn
22 and Rn

11 are the partial-wave reflection coefficients, whilst Tn
22 and Tn

11 are 
the partial-wave transmission coefficients. The subscripts TE and TM indicate the 
polarization. The terms inside the square brackets in Eqs. (A.3) and (A.4) have specific 
physical meanings: the first term represents diffraction; the second term represents reflection 
from the exterior of the sphere and the third term represents (p – 1) internal reflections. If an 
and bn are evaluated for a given value of p, Eqs. (A.1) and (A.2) can be used to calculate the 
amplitude of the scattered field S1,p(θ) and S2,p(θ) due to order p. 

As noted in Section 2.1, the Debye series is not an approximation since the sum of the 
Debye series for all integer values of p from p = 0 to p = ∞ gives the same result as LMT 
calculations. In practice, this vector sum can be safely truncated at much lower values of p, 
for example, pmax = 12 (i.e. p = 0 through p = 12) is more than sufficient for scattering of red 
light from water droplets of diameter d = 20 µm. However, the number of terms necessary to 
achieve agreement with LMT results increases dramatically as d is reduced below 1 µm: for 
example, pmax = 104 is required when d = 0.2 µm, whereas pmax = 107 is required when d = 
0.02 µm. The extraordinary values of pmax required when d << 1 µm demonstrate that using 
the Debye series in these circumstances is like using a sledge-hammer to crack a nut. Of 
course, for scattering of light from such small particles, Rayleigh scattering is applicable – 
which is much simpler than LMT or the Debye series! 

It should be emphasized that the extremely slow convergence of the Debye series is not a 
problem in practice since it is generally only necessary to sum the Debye series contributions 
to check the accuracy of computer algorithms. 
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