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Although scattering of light by a coated sphere is much more complicated than scattering by a homogeneous
sphere, each of the partial wave amplitudes for scattering of a plane wave by a coated sphere can be expanded
in a Debye series. The Debye series can then be rearranged in terms of the various reflections that each partial wave
undergoes inside the coated sphere. For a given number of internal reflections, it is found that many different
Debye terms produce the same scattered intensity as a function of scattering angle. This is called path degeneracy.
In addition, some of the ray trajectories are repeats of those occurring for a smaller number of internal reflections in
the sense that they produce identical time delays as a function of scattering angle. These repeated paths, however,
have a different intensity as a function of scattering angle than their predecessors. The degenerate paths and
repeated paths considerably simplify the interpretation of scattering within the coated sphere, thus making it
possible to catalog the contributions of the various paths. © 2012 Optical Society of America

OCIS codes: 080.5692, 290.4020.

1. INTRODUCTION
The exact solution to scattering of an electromagnetic plane
wave by a coated sphere was first obtained in terms of an in-
finite series of partial wave contributions by Aden and Kerker
in 1951 [1], and numerical computations of coated sphere scat-
tering in the Mie regime appeared a decade later [2]. Since that
time, research into coated sphere scattering has expanded in a
number of directions. For example, it has been found that the
one-internal-reflection rainbow of a homogeneous sphere
evolves into two distinct components when a thin coating sur-
rounds the sphere [3,4]. This phenomenon has found use in
various liquid refractometry measurement methods [5,6].
The physical parameters of either the core or coating strongly
affect both the relation between the wavelength and particle
size for the excitation of morphology dependent resonances
of a coated sphere and the structure of the interior source
function at resonance [7–13]. Coated sphere scattering, aver-
aged over a particle size distribution, has been used to study
the effect of condensation of water on soot particles for the
absorption of sunlight in the atmosphere [14]. Other research
in coated sphere scattering has focused on improving the ro-
bustness of numerical computations. Potential instabilities in
the numerical computation of the spherical Bessel functions
appearing in the coated sphere partial wave scattering ampli-
tudes for complex coating and core refractive indices have led
to a series of improved scattering algorithms [15–18]. Lastly,
the problem of scattering of a plane wave by a coated sphere
has been used as a starting point for various enhancements to
light scattering theory, such as scattering of a focused Gaus-
sian beam [19–21] by a multilayer sphere [22–25]. Recently,
ray scattering methods have been applied to coated sphere
scattering, and were compared to the Aden–Kerker scattered
intensity averaged over a narrow particle size distribution [26].

A more detailed comparison between wave scattering and
ray scattering that takes into account interference between
the various ray contributions would be obtained by using
the Debye series, which serves as a bridge betweenMie theory
and the ray model for a particle whose size is much larger than
the wavelength of the incident light. It decomposes each of the
Mie partial wave scattering amplitudes into an infinite series
of terms that describe diffraction, external reflection, and
transmission following p − 1 internal reflections for p ≥ 1
[27]. In previous studies [3,28], the Debye series has been ob-
tained for scattering by a coated sphere. In this paper and in a
companion paper [29] we examine and interpret the behavior
of many of the Debye terms that contribute to coated sphere
scattering of an electromagnetic plane wave. We find that, in
its original form, the coated sphere Debye series is not espe-
cially well suited to this task. Thus in this paper we reorganize
the terms of the series into a succession of single-scattering
contributions, in analogy to the expanded form [30] or the or-
der of scattering formalism [31] of multiple scattering of
waves from a collection of target particles, so as to simplify
the comparison.

Such a reorganization might seem relatively uncompli-
cated. However, we found that expressing the partial wave
scattering amplitudes directly in terms of single-interaction
amplitudes was not straightforward, and along the way a num-
ber of unanticipated features were encountered. Specifically,
we uncovered two geometric relationships that greatly simpli-
fy the job of cataloging and organizing all the Debye terms.
First, most of the Debye terms have some degree of degener-
acy, i.e., a number of different paths of the light rays (corre-
sponding to the partial waves via van de Hulst’s localization
principle [32]) have exactly the same scattered intensity as a
function of scattering angle. These paths are thus effectively
amplified in the scattered field by the degeneracy factor. This
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fact explains some of the discrepancies between ray theory
and Aden–Kerker scattering obtained in [26]. Second, for a gi-
ven number of internal reflections, many of the Debye terms
encountered are “repeats” of terms that occurred for a smaller
number of internal reflections in the sense that the scattering
angle of the corresponding rays as a function of the incident
ray impact parameter is the same as before. The scattered in-
tensity as a function of scattering angle, however, is different
than for fewer internal reflections.

The ideal context in which to examine and interpret the var-
ious Debye terms is time domain scattering where a short
pulse of electromagnetic radiation is incident on the coated
sphere and the scattered intensity is calculated as a function
of both scattering angle and delay time of the scattered pulse.
This method separates the contributions of the different
Debye terms that occur at the same scattering angle but at
different delay times [33–35] in much the same way that
the Fourier transform of a two dimensional image separates
all the different spatial frequencies contained in the image. It
also removes much of the interference between the different
contributions. Time domain analysis of coated sphere scatter-
ing is the subject of a companion paper [29].

2. DEBYE SERIES FOR SCATTERING BY A
COATED SPHERE
Consider a coated sphere consisting of a core (region 1) of
radius a12 and real refractive index m1 that is concentrically
surrounded by a coating (region 2) of refractive indexm2. The
overall radius of the coated sphere is a23. An electromagnetic
plane wave of vacuumwave number k � 2π ∕ λ, traveling in the
positive z direction in an exterior medium (region 3) of real
refractive indexm3, and polarized in the x direction is incident
on the coated sphere. The partial wave scattering amplitudes
an, bn for the transverse magnetic (TM) and transverse elec-
tric (TE) polarizations, respectively, and where n is the partial
wave number, may be conveniently written in terms of the six
partial wave amplitudes

N12
n � αψn�m2ka12�ψ 0

n�m1ka12� − βψ 0
n�m2ka12�ψn�m1ka12�

(1a)

D12
n � αχn�m2ka12�ψ 0

n�m1ka12� − βχ 0n�m2ka12�ψn�m1ka12�
(1b)

N23
n � γψn�m3ka23�ψ 0

n�m2ka23� − δψ 0
n�m3ka23�ψn�m2ka23�

(1c)

D23
n � γχn�m3ka23�ψ 0

n�m2ka23� − δχ 0n�m3ka23�ψn�m2ka23�
(1d)

P23
n � γψn�m3ka23�χ 0n�m2ka23� − δψ 0

n�m3ka23�χn�m2ka23�
(1e)

Q23
n � γχn�m3ka23�χ 0n�m2ka23� − δχ 0n�m3ka23�χn�m2ka23�;

(1f)

where ψn are Riccati-Bessel functions and χn are Riccati-
Neumann functions in the notation of [36], α � m1, β � m2,
γ � m2, and δ � m3 for the TE polarization, and α � m2,
β � m1, γ � m3, and δ � m2 for the TM polarization. The

partial wave scattering amplitudes are expressed in terms
of Eqs. (1a)–(1f) as [3]

an; bn � �D12
n N23

n − N12
n P23

n � ∕ ��D12
n N23

n − N12
n P23

n �
� i�D12

n D23
n − N12

n Q23
n ��: (2)

The scattered intensity for unpolarized incident light is

I�r; θ� � �E0
2 ∕ �2μ0ck2r2���jS1�θ�j2 � jS2�θ�j2�; (3)

where E0 is the field strength of the incident plane wave, μ0 is
the permeability of free space, θ is the scattering angle, c is the
speed of light, and r is the distance from the center of the
coated sphere to the detector. The scattering amplitudes
S1�θ� and S2�θ� are

S1�θ� �
X∞
n�1

f�2n� 1� ∕ �n�n� 1��g�anπn�θ� � bnτn�θ�� (4a)

S2�θ� �
X∞
n�1

f�2n� 1� ∕ �n�n� 1��g�anτn�θ� � bnπn�θ��; (4b)

where πn�θ� and τn�θ� are the angular functions of Mie theory
[37]. In the short wavelength limit, S1�θ� asymptotically be-
comes the amplitude for TE-polarized scattering and S2�θ�
asymptotically becomes the amplitude for TM-polarized
scattering.

The Debye series decomposes the partial wave scattering
amplitudes into a sum of terms corresponding to diffraction,
external reflection, and transmission accompanied by various
numbers of internal reflections, and involves the two
additional partial wave amplitudes

P12
n � αψn�m2ka12�χ 0n�m1ka12� − βψ 0

n�m2ka12�χn�m1ka12�
(5a)

Q12
n � αχn�m2ka12�χ 0n�m1ka12� − βχ 0n�m2ka12�χn�m1ka12�;

(5b)

as well as the expressions for the partial wave Fresnel reflec-
tion and transmission coefficients at each of the two inter-
faces. The quantities R323

n and T32
n are the Fresnel reflection

and transmission coefficients for a radially incoming spherical
multipole wave of partial wave number n in region 3 incident
on the coating/exterior interface. Similarly, R232

n and T23
n are

the Fresnel coefficients for a radially outgoing spherical multi-
pole wave in region 2 incident on the coating/exterior inter-
face, R212

n and T21
n are the Fresnel coefficients for a radially

incoming spherical multipole wave in region 2 incident on
the core/coating interface, and R121

n and T12
n are the Fresnel

coefficients for a radially outgoing spherical multipole wave
in region 1 incident on the core/coating interface. It can then
be straightforwardly shown by matching the boundary condi-
tions of the components of the electric and magnetic fields at
the interfaces [38] that

R323
n � �−N23

n � Q23
n � iD23

n � iP23
n � ∕ �N23

n � Q23
n � iD23

n − iP23
n �

(6a)

R232
n � �−N23

n � Q23
n − iD23

n − iP23
n � ∕ �N23

n � Q23
n � iD23

n − iP23
n �
(6b)
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T32
n � −2im3 ∕ �N23

n � Q23
n � iD23

n − iP23
n � (6c)

T23
n � −2im2 ∕ �N23

n � Q23
n � iD23

n − iP23
n � (6d)

R212
n � �−N12

n � Q12
n � iD12

n � iP12
n � ∕ �N12

n � Q12
n � iD12

n − iP12
n �

(6e)

R121
n � �−N12

n � Q12
n − iD12

n − iP12
n � ∕ �N12

n � Q12
n � iD12

n − iP12
n �
(6f)

T21
n � −2im2 ∕ �N12

n � Q12
n � iD12

n − iP12
n � (6g)

T12
n � −2im1 ∕ �N12

n � Q12
n � iD12

n − iP12
n �: (6h)

The Debye series decomposition of the coated sphere
partial wave scattering amplitudes is then

an; bn � �1 − R323
n − T32

n WnT23
n ∕ �1 −WnR232

n ��∕ =2

�
�
1 − R323

n −

X∞
q�1

T23
n �WnR232

n �q−1WnT23
n

�
∕ =2; (7)

where

Wn � R212
n � T21

n T12
n ∕ �1 − R121

n � � R212
n �

X∞
p�1

T21
n �R121

n �p−1T12
n :

(8)

Three different derivations of Eqs. (7) and (8) are given
in [3,28,39].

3. REORGANIZATION OF THE DEBYE
SERIES
Although Eqs. (7) and (8) express the partial wave scattering
amplitudes in terms of the Fresnel transmission and reflection
coefficients at the two interfaces, the specific sequence of
transmissions and reflections of the different paths of the cor-
responding light rays is not readily evident in the equations. It
was thus found to be useful to re-express the Debye series in
terms of differing numbers of internal reflections N , subdi-
vided into N212 of the internal reflections R212

n , N121 of the re-
flections R121

n , and N232 of the reflections R232
n with the

constraint

N212 � N121 � N232 � N: (9)

The N � 0 portion of Eqs. (7) and (8) is then

�an; bn�N�0 � �1 − R323
n − T32

n T21
n T12

n T23
n � ∕ 2: (10)

The first term of Eq. (10) when summed over partial waves
quantitatively describes diffraction, the second term describes
external reflection, and the third term describes transmission
through the coating into the core and then transmission back
out again, as indicated by ray path A in Fig. 1. The progression
of superscripts in each term from left to right indicates the
path of a corresponding light ray [32] through the various re-
gions from start to finish. In ray theory, if the core is small and
the impact parameter of a ray incident on the coating/exterior
interface is large as for ray path B in Fig. 1, it can be
transmitted into the coating, miss striking the core, and be

transmitted back out again. But the term T32
n T23

n that would
seem to correspond to this situation does not occur in the
N � 0 portion of the Debye series. This is because the Debye
series describes radially incoming and outgoing spherical mul-
tipole waves. Once a radially incoming wave is transmitted
from region 3 into region 2, it must either reflect off the
core/coating interface or be transmitted into and out of the
core before it becomes a radially outgoing wave that can
be transmitted from region 2 back into region 3. The situation
described above is described rather by the N � 1 term
T32
n R212

n T23
n in Eq. (11) below, where the partial waves n >

ka12 corresponding to the incident rays that miss the core still
interact with it via tunneling external reflection with the am-
plitude R212

n → 1 [40]. But then it would seem in analogy to
quantum electrodynamics that the set of ladder terms [41]
T32
n R212

n R212
n T23

n , T23
n R212

n R212
n R212

n T23
n , etc. should also describe

this situation. These terms with the additional adjacent factors
of R212

n are not present in the Debye series of Eqs. (7) and (8).
Again this is because radially incoming and outgoing spherical
multipole waves are being described. Such a wave initially in
region 2 and reflected by the core/coating interface must next
be reflected by the coating/exterior interface before it can be
reflected by the core/coating interface again. The last two
terms of Eq. (10) correspond to the ray paths shown in
Figs. 2(a) and 2(b).

The N � 1 portion of Eqs. (7) and (8) is

�an; bn�N�1 � −T32
n �R212

n � T21
n R121

n T12
n

� T21
n T12

n R232
n T21

n T12
n �T23

n ∕ 2: (11)

The three terms in Eq. (11) correspond to the ray paths
shown in Figs. 2(c), 2(d), and 2(e). They describe, respec-
tively, reflection from the core/coating interface with inci-
dence from region 2, reflection from the core/coating
interface with incidence from region 1, and reflection from
the coating/exterior interface with incidence from region 2.
Again, if a large impact parameter ray were incident on a
coated sphere containing a small core, it could enter the coat-
ing, be internally reflected at the coating/exterior interface,
and be transmitted back out without ever entering the core.
An appropriate collection of such rays could participate in a
one-internal-reflection rainbow entirely in the coating
material, which would be identical to the one-internal-reflec-
tion rainbow of a homogeneous sphere composed of coating
material. But again the term T32

n R232
n T23

n , which would seem to
correspond to this situation, does not occur in the N � 1 por-
tion of the Debye series expansion. What had been the

Fig. 1. (Color online) Ray path A passes through the core, whereas
ray B misses the core.
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one-internal-reflection rainbow of a homogeneous sphere is
now contained in the N � 3 Debye term T32

n R212
n R232

n R212
n T23

n

via tunneling external reflection of large partial waves with
the amplitude R212

n → 1 both before and after the internal re-
flection at the coating/exterior interface.

In like manner, the N � 2 portion of Eqs. (7) and8) is

�an; bn�N�2 � −T32
n �T21

n R121
n R121

n T12
n � R212

n R232
n T21

n T12
n

� T21
n T12

n R232
n R212

n � T21
n T12

n R232
n T21

n R121
n T12

n

� T21
n R121

n T12
n R232

n T21
n T12

n

� T21
n T12

n R232
n T21

n T12
n R232

n T21
n T12

n �T23
n ∕ 2: (12)

The terms in Eq. (12) correspond to the ray paths shown in
Fig. 2(f)–2(k), respectively.

The number of Debye series terms rapidly increases as a
function of N , there being 2, 3, 6, 14, 31, 70, 157, 353 terms
for 0 ≤ N ≤ 7, respectively. In order to simplify the cataloging
of these Debye series terms, it will prove useful to parameter-
ize them by the total number N of internal reflections, the
number of chords A of the path of the corresponding light
ray in the coating region between reflections, and the number
of chords B in the core region between reflections. Using this
parameterization, the diffraction-plus-external reflection term
in Eq. (10) is �N;A; B� � �0; 0; 0� and the transmission term is
(0, 2, 1). The three terms in Eq. (11) are (1, 2, 0), (1, 2, 2), and
(1, 4, 2) respectively, and the six terms in Eq. (12) are (2, 2, 3),
(2, 4,1), (2, 4, 1), (2, 4, 3), (2, 4, 3), and (2, 6, 3), respectively.
Figure 2 shows all the possible paths of the correspon-
ding light rays for N ≤ 3. It should be noted that for

Fig. 2. (Color online) Ray paths forN ≤ 3 internal reflections showing the (N , A, B) values, where A is the number of chords in the coating and B is
the number of chords in the core.
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N � 2 the two Debye terms T32
n R212

n R232
n T21

n T12
n T23

n and
T32
n T21

n T12
n R232

n R212
n T23

n are both parameterized by (2, 4, 1)
and are reversed paths of each other, as is illustrated in Fig. 3.
Each of these two Debye terms is merely a different ordering
of the same collection of partial wave Fresnel transmission
and reflection coefficients, which when summed as in
Eqs. (4a) and (4b), produces the same scattered field as a
function of θ. Thus each of the (2, 4, 1) Debye terms has
the same scattering signature in Eq. (3). This is reminiscent
of coherent back-scattering in the multiple scattering of light
from a collection of many particles [42,43]. If one considers
the corresponding light rays for these two terms, the scatter-
ing angle θ as a function of the angle of incidence θ3i of an
incoming ray and the optical path length of the scattered rays
as a function of θ3i are the same as well. Thus each (2, 4, 1)
Debye term has the same trajectory in scattering angle-delay
time space for time domain scattering. This degeneracy also
occurs for the N � 2 terms T32

n T21
n R121

n T12
n R232

n T21
n T12

n T23
n and

T32
n T21

n T12
n R232

n T21
n R121

n T12
n T23

n , which are both parameterized
by (2, 4, 3). Thus we say that the degeneracy factor of
(2, 4, 1) and (2, 4, 3) is D � 2 since two different Debye terms
corresponding to two different ray paths have exactly the
same scattering signature when the scattered intensity is
plotted as a function of the scattering angle or the scattered
pulse delay time is plotted as a function of the scatter-
ing angle.

The degeneracy factor was also determined for ray paths
with larger N . Let the angles θ2t, θ2i, and θ1t be the transmitted
angle of a ray from region 3 into region 2 at the coating/
exterior interface, the angle of incidence in region 2 on the
coating/core interface, and the transmitted angle from region
2 into region 1 at the coating/core interface, respectively. Then
Snell’s law gives

m3 sin�θ3i� � m2 sin�θ2t� (13a)

m2 sin�θ2i� � m1 sin�θ1t�; (13b)

and the coated sphere geometry gives

a23 sin�θ2t� � a12 sin�θ2i�: (14)

As a corresponding ray propagates through the coated
sphere, each T32

n and T23
n factor contributes a deflection angle

of θ3i − θ2t, each T21
n and T12

n contributes θ2i − θ1t, each R232
n

contributes π − 2θ2t, each R121
n contributes π − 2θ1t, and each

R212
n contributes −π � 2θ2i. Applying this rule to all the ray

paths for N ≤ 7, the scattering angle was found to depend only
on the number of chords A and B in the coating and core re-
gions, the refractive indices m1, m2, m3, the radii a12 and a23,
but not onN . Similarly, the optical path length associated with
the incident ray and with the exiting ray in region 3 is
m3a23�1 − cos�θ3i��, the optical length of each chord in the
coating is m2�a23 cos�θ2t� − a12 cos�θ2i��, and the optical
length of each chord in the core is 2m1a12 cos�θ1t�. The total
optical path length also depends only on A and B, the refrac-
tive indices, and the radii, but not on N . As N increases, the
complexity of the ray paths increases and the degeneracy fac-
tor of many of the (N , A, B) terms also increases. As an ex-
ample of increased degeneracy, one of the four (4, 4, 5) Debye
terms is T32

n T21
n R121

n R121
n R121

n T12
n R232

n T21
n T12

n T23
n . All three of the

121 reflections in this term occur before the 232 reflection.
The other three degenerate (4, 4, 5) terms have two, one,
and zero of the 121 reflections occurring before the 232 reflec-
tion. Taking this path degeneracy into account, the number of
independent Debye terms becomes 2, 3, 4, 7, 9, 13, 16, 21 for
0 ≤ N ≤ 7, as shown in Table 1.

Another effect that decreases the number of different paths
for time domain scattering occurs for N ≥ 3. For example, the
path (1, 4, 2) is T32

n T21
n T12

n R232
n T21

n T12
n T23

n while the two degen-
erate paths (3, 4, 2) are T32

n R212
n R232

n T21
n R121

n T12
n T23

n and
T32
n T21

n R121
n T12

n R232
n R212

n T23
n . In addition to the partial wave

Fresnel coefficients common to both terms, the (1, 4, 2) term
has an extra T21

n T12
n while the (3, 4, 2) terms have a extra

R212
n R121

n . According to the rules given above, both of these ex-
tra factors have the same deflection angle 2θ2i − 2θ1t of the
corresponding light rays. Thus the (1, 4, 2) and (3, 4, 2) rays
have the same scattering angle as a function of θ3i. They both
have a rainbow at exactly the same scattering angle, and they
both have the same glory structure for θ ≈ 180°. Since the op-
tical path length as a function of θ3i depends only on A and B,
the (3, 4, 2) time domain trajectories in scattering angle-delay
time space are a repeat of the (1, 4, 2) path. This is illustrated
in Fig. 4. However, when the partial wave scattering ampli-
tudes of these Debye terms are summed in Eqs. (4a) and
(4b), the scattered field of (1, 4, 2) as a function of θ differs
from that of (3, 4, 2) due to the extra T21

n T12
n factor in (1, 4, 2)

and the extra R212
n R121

n factor in (3, 4, 2). The extra T21
n T12

n fac-
tor contributes more strongly to the scattered field for small
partial waves corresponding to near-paraxial rays, while the
extra R212

n R121
n factor contributes more strongly for larger par-

tial waves corresponding to rays having near-grazing inci-
dence on the core. Similarly for N � 4, the (4, 4, 3) and (4,
6, 3) time domain paths are repeats of the N � 2 paths (2,
4, 3) and (2, 6, 3). The existence of repeated paths at higher
values of N further decreases the number of new paths that
need to be considered for time domain scattering to 2, 3, 4, 6,
7, 9, 10, 12 for 0 ≤ N ≤ 7, respectively.

It should be noted that rays having near-grazing incidence
on the core generate electromagnetic surface waves at the
core/coating interface in the same way that rays having
near-grazing incidence on the coating generate surface waves
at the coating/exterior interface. In [40,44] it was shown that
the dominant coating/exterior surface wave scattered field
has the approximate attenuation factor exp�−�m3ka23�1 ∕ 3
31 ∕ 2X�θ − θc� ∕ 24 ∕ 3�, where θc is the critical scattering angle

Fig. 3. (Color online) Two degenerate (2, 4, 1) ray paths.
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and −X is the first zero of the Airy function, with the numerical
value X ≈ 2.3381. A similar derivation, expanding the Debye
series terms for partial waves in the edge region in terms
of Airy functions, converting the sum over partial waves into
a modified Fock function, and evaluating it via contour inte-
gration, gives the result that the dominant core/coating
surface wave scattered field has the attenuation factor
exp�−�m2ka12�1 ∕ 331 ∕ 2X�θ − θc� ∕ 24 ∕ 3�.

In order to determine the degeneracy factor of all Debye
terms for arbitrary N , Eq. (7) was expanded in powers of
R232
n and was combined with Eq. (8). The results were then

organized into differing total numbers of internal reflections
under the constraint of Eq. (9). For rays that are transmitted
into the coating, the degeneracy of each (N , A, B) Debye terms
in the resulting collection was found to be the product of two
factors. The first factor was the binomial coefficient for the
powers of R232

n and R212
n appearing in the (N , A, B) term.

The second factor was the total number of ways of organizing
the remaining R121

n factors between the R232
n and R212

n

factors. The results are

N232 � �A − 2� ∕ 2; (15a)

N121 � �N � 1 − A� B� ∕ 2; (15b)

N212 � �N � 1 − B� ∕ 2; (15c)

Table 1. Debye Series Terms (N, A, B) for N ≤ 7
Internal Reflections Showing the Number of

Internal Reflections N232, N212 and N121, and the

Degeneracy Factor Da

(N , A, B) N232 N212 N121 D

(0, 0, 0) 0 0 0 1
(0, 2, 1) 0 0 0 1
(1, 2, 0) 0 1 0 1
(1, 2, 2) 0 0 1 1
(1, 4, 2) 1 0 0 1
(2, 2, 3) 0 0 2 1
(2, 4, 1) 1 1 0 2
(2, 4, 3) 1 0 1 2
(2, 6, 3) 2 0 0 1
(3, 2, 4) 0 0 3 1
(3, 4, 0) 1 2 0 1
(3, 4, 2)* 1 1 1 2
(3, 4, 4) 1 0 2 3
(3, 6, 2) 2 1 0 3
(3, 6, 4) 2 0 1 3
(3, 8, 4) 3 0 0 1
(4, 2, 5) 0 0 4 1
(4, 4, 3)* 1 1 2 2
(4, 4, 5) 1 0 3 4
(4, 6, 1) 2 2 0 3
(4, 6, 3)* 2 1 1 6
(4, 6, 5) 2 0 2 6
(4, 8, 3) 3 1 0 4
(4, 8, 5) 3 0 1 4
(4, 10, 5) 4 0 0 1
(5, 2, 6) 0 0 5 1
(5, 4, 4)* 1 1 3 2
(5, 4, 6) 1 0 4 5
(5, 6, 0) 2 3 0 1
(5, 6, 2)* 2 2 1 3
(5, 6, 4)* 2 1 2 9
(5, 6, 6) 2 0 3 10
(5, 8, 2) 3 2 0 6
(5, 8, 4)* 3 1 1 12
(5, 8, 6) 3 0 2 10
(5, 10, 4) 4 1 0 5
(5, 10, 6) 4 0 1 5
(5, 12, 6) 5 0 0 1
(6, 2, 7) 0 0 6 1
(6, 4, 5)* 1 1 4 2
(6, 4, 7) 1 0 5 6
(6, 6, 3)* 2 2 2 3
(6, 6, 5)* 2 1 3 12
(6, 6, 7) 2 0 4 15
(6, 8, 1) 3 3 0 4
(6, 8, 3)* 3 2 1 12
(6, 8, 5)* 3 1 2 24
(6, 8, 7) 3 0 3 20
(6, 10, 3) 4 2 0 10
(6, 10, 5)* 4 1 1 20
(6, 10, 7) 4 0 2 15
(6, 12, 5) 5 1 0 6
(6, 12, 7) 5 0 1 6
(6, 14, 7) 6 0 0 1
(7, 2, 8) 0 0 7 1
(7, 4, 6)* 1 1 5 2
(7, 4, 8) 1 0 6 7
(7, 6, 4)* 2 2 3 3
(7, 6, 6)* 2 1 4 15
(7, 6, 8) 2 0 5 21
(7, 8, 0) 3 4 0 1

(Table continued)

Table 1. (Continued)

(N , A, B) N232 N212 N121 D

(7, 8, 2)* 3 3 1 4
(7, 8, 4)* 3 2 2 18
(7, 8, 6)* 3 1 3 40
(7, 8, 8) 3 0 4 35
(7, 10, 2) 4 3 0 10
(7, 10, 4)* 4 2 1 30
(7, 10, 6)* 4 1 2 50
(7, 10, 8) 4 0 3 35
(7, 12, 4) 5 2 0 15
(7, 12, 6)* 5 1 1 30
(7, 12, 8) 5 0 2 21
(7, 14, 6) 6 1 0 7
(7, 14, 8) 6 0 1 7
(7, 16, 8) 7 0 0 1
aThe terms marked * correspond to repeated paths of terms with

(N − 2, A, B).

Fig. 4. (Color online) Ray path (1, 4, 2) is shown in green and the
repeated path (3, 4, 2) is shown in blue.
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or

A � 2N232 � 2; (16a)

B � N � 1 − 2N212: (16b)

The ray paths for time domain scattering occurring for
a given N that are not repeats of paths that occurred for
N − 2 are

N232 � N − j; N121 � j; N212 � 0 (17)

for 0 ≤ j ≤ N , and

N232 � N − j; N121 � 0; N212 � j (18)

for 1 ≤ j ≤ N ∕ 2 when N is even and for 1 ≤ j ≤ �N � 1� ∕ 2 when
N is odd. The reorganized Debye series of the partial wave
scattering amplitudes is then

an; bn �
�
1 − R323

n −

X∞
N�0

T32
n FN

n T23
n

�
∕ =2; (19)

where

FN
n �

XN
N232�0

XNmax

N212�0

D�N;N232; N212��T21
n T12

n �N232�1−N212

× �R232
n �N232�R212

n �N212 �R121
n �N121 � GN

n ; (20)

Nmax is the smaller of N232 and N − N232, and

GN
n � �R232

n ��N−1� ∕ 2�R212
n ��N�1� ∕ 2 (21)

for odd N .
The degeneracy factor D of the time domain paths is

D�N;N232; N212� � �N232 � 1�!
× �N − 2N212�! ∕ ��N212�!�N232 � 1 − N212�!
× �N − N232 − N212�!�N232 − N212�!�: (22)

The GN
n term in Eqs. (20) and (21) for odd N is the Debye

term (N , N � 1, 0) having D � 1. This term describes rays re-
flecting back and forth within the coating a number of times
without ever entering the core. For a large core and small im-
pact parameter of the corresponding light rays, this term gives
a time delayed optical echoing of the external reflection term
(0, 0, 0), which is known in the modeling of mirages as ducting
[45]. For a small core and large ray impact parameter, it con-
tains the p − 1 internal reflection rainbow for a homogeneous
sphere made of coating material. It should be noted that since
the degeneracy factor appears in the expression for the partial
wave scattering amplitudes, the scattered intensity for each
Debye term is proportional to D2, i.e., it is a coherent, rather
than an incoherent, enhancement [42,43].

Figure 5(a) compares the exact Aden–Kerker transverse-
electric-polarized scattered intensity as a function of θ with
the sum of the 16 Debye series terms for N ≤ 3 taking account
of the degeneracy factors D listed in Table 1. The agreement is
very good, bearing in mind that we have neglected the Debye
terms with N > 3. However, when degeneracy is ignored

(i.e., by setting D � 1 for all Debye terms), the comparison is
much worse—especially for 90° < θ < 140°. The parameters
used to produce Fig. 5 (i.e. m1 � 1.5, m2 � 1.33, and
a12 ∕ a23 � 0.8) are similar to those in Fig. 2 of [26], which com-
pared the results of ray tracing computations of coated sphere
scattering with the Aden–Kerker scattered intensity. As in
Fig. 5(a), the comparison in [26] was generally good except
that the Aden–Kerker unpolarized scattered intensity was a
factor of∼1.8 higher than the ray tracing unpolarized intensity
at the position of the αβ rainbow [29] at θ ≈ 100°, and it was a
factor of ∼1.4 higher than the ray tracing intensity for 100° <
θ < 140° in the relatively dark region between the αβ and α
rainbows. The authors of [26] attributed these discrepancies
to possible inaccuracies in the Aden–Kerker wave scattering
computer program. Figure 5(b) shows that the Debye terms

Fig. 5. (Color online) Transverse-electric polarized scattering
from polydisperse coated spheres with median value of xe �
2πa23 ∕ λ � 600, variance ve � 1∕ 9, a12 ∕ a23 � 0.8, m1 � 1.5 and m2 �
1.33 (as in Fig. 2 of [26]). Figure 5(a) compares the results of
Aden–Kerker calculations (shown in red) with the sum of the 16 De-
bye terms for N ≤ 3: the blue curve has been calculated using the de-
generacy factors D listed in Table 1, while the green curve has been
calculated assuming that D � 1. The scattering contributions from in-
dividual terms of the Debye series terms in Fig. 5(b) take account of
the fact that D � 2 for the (2, 4, 1) and (2, 4, 3) terms, whereas the
results in Fig. 5(c) incorrectly assume that D � 1 for all of the terms.

J. Lock and P. Laven Vol. 29, No. 8 / August 2012 / J. Opt. Soc. Am. A 1495



(0, 0, 0), (0, 2, 1), (1, 2, 0), and (2, 4, 1) provide a background to
the αβ rainbow of (2, 4, 3) at θ ≈ 100°, while Fig. 5(c) shows
that the (2, 4, 3) term is no longer dominant at θ ≈ 100° when
degeneracy is ignored. Since ray scattering methods typically
perform an incoherent sum of all the ray theory paths, the co-
herent amplification of certain paths by their degeneracy
factors is not taken into account in ray calculations. The αβ
rainbow of the (2, 4, 3) Debye term has a degeneracy of D �
2 and thus produces twice the scattered intensity as the inco-
herently added intensity of the first (2, 4, 3) path plus that of
the second (2, 4, 3) path. This expected amplification factor of
2.0 is in good agreement with the ∼1.8 amplification factor
measured in Figs. 2 and 4 of [26]. Similarly, the assumption
of D � 1 in Fig. 5(c) underestimates the contribution from
the (2, 4, 1) term, resulting in the erroneous results shown
by the green curve in Fig. 5(a) when 105° < θ < 140°. These
results demonstrate that the coherent effects of path degen-
eracy cannot be ignored.

By way of comparison, coated sphere scattering is the sim-
plest case beyond scattering of a plane wave by a homoge-
neous sphere (region 1) in an external medium (region 2).
Since only one type of internal reflection can occur for homo-
geneous sphere scattering, its Debye series of the partial wave
scattering amplitudes is

an; bn �
�
1 − R212

n −

X∞
N�0

T21
n FN

n T12
n

�
∕ = 2; (23)

where

FN
n � D�N��R121

n �N (24)

and D � 1, while the reorganized Debye series for coated
sphere scattering is given in parallel form by the significantly
more complicated Eqs. (19)–(22).

The Debye series for scattering by a coated sphere is in
some sense intermediate between two limiting cases. For scat-
tering by a homogeneous sphere, it assumes a simple form
when written as Eqs. (23) and (24) in terms of single-scatter-
ing reflection and transmission amplitudes, whereas for scat-
tering by a sphere containing a large number of concentric
layers, the Debye series assumes the same simple form when
expressed in terms of multiple scattering reflection and trans-
mission amplitudes that encompass many interfaces [38,
46–49]. Analogously to multiple scattering of waves from a
collection of target particles, expressions such as Eqs. (7)
and (8) are termed compact forms for the scattering amplitude
while expressions such as Eqs. (19)–(22) are termed ex-
panded forms [30] or order of scattering forms [31]. The
coated sphere problem has the unique status of allowing
the compact form to be tractable enough to permit the com-
plete cataloging and organization of the expanded form.

4. CONCLUSIONS
We found that the parameterization of the individual coated
sphere Debye terms by the total number of internal reflections
N , and the number of chords in the coating and core regions,
A and B, provides a simple and practical organization. This
organization leads in a natural way to both the degeneracy
of a number of the Debye terms and the repeat in time domain
scattering of some of the ray paths for N internal reflections

that previously occurred for N − 2 internal reflections. These
two geometrical relationships greatly simplify the apparent
complexity of multiple internal reflection scattering within
the coated sphere, where for example the 353 Debye series
terms for N � 7 reduce down to 21 distinct terms and only
12 new ray paths for time domain scattering that are not re-
peats of paths that occurred for smaller N . The consequences
of this simplification will be studied in detail in [29].
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