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Numerical computations were made of scattering of an incident electromagnetic pulse by a coated sphere that is
large compared to the dominant wavelength of the incident light. The scattered intensity was plotted as a function
of the scattering angle and delay time of the scattered pulse. For fixed core and coating radii, the Debye series terms
that most strongly contribute to the scattered intensity in different regions of scattering angle-delay time space
were identified and analyzed. For a fixed overall radius and an increasing core radius, the first-order rainbow
was observed to evolve into three separate components. The original component faded away, while the two
new components eventually merged together. The behavior of surface waves generated by grazing incidence
at the core/coating and coating/exterior interfaces was also examined and discussed. © 2012 Optical Society

of America
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1. INTRODUCTION

In the first part of this study [1], we considered an electromag-
netic plane wave traveling in an exterior medium (region 3) of
real refractive index mg, which is scattered by a coated sphere
of overall radius ay3, and consisting of a core (region 1) of
radius a;> and real refractive index m; concentrically sur-
rounded by a coating (region 2) of real refractive index m,.
The partial wave scattering amplitudes, first derived by Aden
and Kerker [2], were expanded in a Debye series [3,4], which
was then reorganized in terms of differing total numbers N of
internal reflections. These consist of N212 of the R2!2 internal
reflections of a partial wave in region 2 at the core/coating
interface back into region 2 again, N'2! of the R!?! internal
reflections of a partial wave in region 1 at the core/coating
interface back into region 1 again, and N?%2 of the R2* internal
reflections of a partial wave in region 2 at the coating/exterior
interface back into region 2 again, with N212 4 N1214
N?232 = N. The various Debye terms were parameterized by
(N,A,B), where the paths of the corresponding light rays
through the coated sphere, as obtained using van de Hulst's
localization principle [5], have A chords in the coating region
and B chords in the core region. Using this parameterization it
was found in [1] that all the Debye series terms with the same
values of N, A, and B for plane wave incidence have the same
scattered field as a function of the scattering angle 6. This is
called path degeneracy. In time domain scattering, a short
electromagnetic pulse is incident on the coated sphere and
the scattered intensity is plotted as a function of 0 and the
delay time ¢ of the scattered pulse [6-9]. Since the optical path
length of the corresponding light rays of each Debye term de-
pends only on A and B as well, these different paths also have
the same intensity in 6 - ¢ space for time domain scattering.

In addition, some of the (IV, A, B) terms are recurrences of
the (N -2, A, B) terms. These are called repeated paths. For
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these terms the (N, A, B) rays have the same time domain tra-
jectory in 0 — t space as do the rays for (N - 2, A, B). But since
the (N - 2, A, B) Debye term contains extra partial wave trans-
mission coefficients while the (N, A, B) term contains extra
partial wave reflection coefficients, the scattered intensity
of the (V,A,B) and (N -2, A, B) terms differs along the re-
peated 6 - ¢ trajectory. Both path degeneracy and the repeated
terms greatly reduce the number of Debye terms that need to
be examined for a given value of N. For example, there are 353
Debye terms for N = 7. Taking path degeneracy into account
there are only 21 independent Debye terms. If the repeated
terms are also taken into account for time domain scattering,
there are only 12 new trajectories in 6 — ¢ space that did not
occur for N = 5. These geometrical effects greatly reduce the
complexity of the analysis of scattering by a coated sphere.

The body of this paper is organized as follows. In Section 2
we consider scattering by coated sphere with a fixed core ra-
dius. We identify the dominant Debye terms for scattering in a
number of different regions of € — ¢ space, and point out some
interesting scattering effects occurring in various terms. In
Section 3 we consider scattering for varying core radius.
Again we determine the dominant Debye terms, and also study
the evolution of both the first-order rainbow and the core/
coating surface waves as a function of core size. In Section 4
we present some concluding remarks. All of the results in this
paper have been generated using the MiePlot computer pro-
gram, which can be downloaded free of charge from www
.philiplaven.com/mieplot.htm.

2. COATED SPHERE WITH A CORE OF
FIXED RADIUS

We first considered a 5 fs temporally Gaussian and spatially
plane wave pulse whose Fourier spectrum is centered on A =
0.65 pum and truncated at —60 dB as described in detail in [8].

© 2012 Optical Society of America
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The pulse is incident on a coated sphere with core refractive
index m; = 1.5, coating refractive index my, = 1.3333, and ra-
dii a3 = 7.5 um, ass = 10 ym in an external medium with
ms = 1. In this situation, the core is “particle-like” with re-
spect to the coating since m; > my. If m; < msy, the core
would have been “bubble-like” with respect to the coating
and many details of the scattering would have been quite dif-
ferent. Since my/mg = 4/3 and a,3/ass = 3/4, a ray tracing
analysis as described in [1] shows that an incident light ray
grazing the edge of the coating and transmitted into it at
the critical angle also has grazing incidence on the core. Phys-
ically this means that core/coating and coating/exterior elec-
tromagnetic surface waves are generated by the same edge
rays and cannot be distinguished from each other when
plotted as a function of scattering angle alone.

For each wave number k appearing in the Fourier spectrum
of the incident pulse, the transverse electric (7 = 1) and trans-
verse magnetic (¢ = 2) scattering amplitude is S;(6), where

810) = Y _{@2n + 1y[n(n + D]}a,m,(6) + b,7,(0)] (1)

n=1

S5(0) = Y {@n + 1Y[n(n + D}ia,7,(0) + b,7,(0)], (1b)
n=1

7,(0) and 7, (6) are the angular functions of Mie theory [10],
and a, and b,, are either the full Aden—Kerker partial wave
scattering amplitudes, or those of the specific (N, A, B) Debye
term being studied. Since the refractive indices of the core and
coating were taken to be real, the spherical Bessel functions
appearing in a,, and b, were calculated using either upward
recursion or downward recursion in double precision, de-
pending on the relative values of nykas, nika;s, and nskass
to the largest partial wave required for convergence of the par-
tial wave sum in Egs. (1a) and (1b). The scattering amplitude
is then multiplied by F'(k), the weighting function of the
Fourier spectrum of the incident pulse, and the result is then
inverse Fourier transformed back to the time domain using
the 21> = 32,768 point fast Fourier transform algorithm.
The time domain intensity is proportional to the square of the
magnitude of the time domain electric field, which is plotted
as a function of the scattering angle and delay time of the scat-
tered pulse as in [6-9].

The intensity obtained from the full Aden—Kerker scattering
calculations is shown in false color in Fig. 1, where the time
delay of the scattered pulse is measured relative to that of the
pulse that is externally reflected at @ = 180° from the coating/
exterior interface. The most important Debye series con-
tributions are labeled by their (N, A, B) value in the figure.
The physical meaning of each (N,A,B) Debye term is de-
scribed in [1], and the identifications in Fig. 1 are based on
a comparison with the corresponding time domain ray trajec-
tories. This figure, when compared with Fig. 1 of [8], which
shows time domain scattering of a similar incident pulse by
a homogeneous sphere of radius 10 um, illustrates the great
richness in structure of scattering by a coated sphere. This
structure is much more evident in the time domain, where all
the different scattering mechanisms contributing at the same
scattering angle are separated by their differing delay times. If
the scattered intensity had been plotted solely as a function of
0, all the scattering mechanisms would be superposed and

Vol. 29, No. 8 / August 2012 / J. Opt. Soc. Am. A 1499

Scattering angle 8(°)

-50 0 100 200
Time (fs)

300 350

Fig. 1. (Color online) Scattered intensity as a function of the scatter-
ing angle 6 and delay time ¢ of a 5 fs unpolarized Gaussian pulse by a
coated sphere of core radius a; = 7.5 um and refractive index
my = 1.5, coating refractive index ms = 1.3333, and overall radius
ass = 10 ym. The dominant Debye series contributions (N, A, B) in
different regions of 8 -t space are indicated.

interfere with each other. The time domain method allows
one to examine the weaker contributions in detail without
having them obscured by the stronger contributions.

The time domain path of reflection at the coating/core inter-
face (1, 2, 0) is delayed with respect to that of external reflec-
tion at the coating/exterior interface (0, 0, 0) due to the two
extra passes of the pulse through the coating. The (0, 2, 1)
term for direct transmission through both the core and coating
is qualitatively similar to its behavior for scattering by a homo-
geneous sphere of the same overall size [7,8]. As the (0, 2, 1)
contribution dies out for larger delay times, the two-fold de-
generate contribution of the (2, 4, 1) term, corresponding to
transmission through the coated sphere following two succes-
sive reflections within the coating, becomes dominant. The
first-order rainbow of (1, 4, 2) dominates scattering for
6 =~ 170°. The internal reflection for this term occurs at the
coating/exterior interface and was called the f rainbow in
[4]. The first-order rainbow in (1, 2, 2) is visible at 0 = 142°.
The internal reflection for this term occurs at the core/coating
interface and was called the a rainbow in [4]. Since the coat-
ing/exterior reflection is stronger than the core/coating reflec-
tion, the g rainbow is brighter than the « rainbow. The
backscattering region in Fig. 1 is dominated by the (2, 4, 1)
and (1, 4, 2) glories. For longer delay times, the (2, 4, 3)
and (2, 6, 3) second-order rainbows are dominant. The for-
ward scattering region at ¢~ 300 fs is dominated by the
(2, 6, 3) glory, which makes three complete passes through
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the coated sphere with two reflections at the coating/exterior
interface, and the (3, 4, 4) third-order rainbow and double
glory to be described in more detail below.

Figure 2(a) is a magnified view of Fig. 1 for 130° < 6 < 180°
and 150 fs < ¢ <230 fs. In this figure, the a and g twin first-
order rainbows due to the (1, 2, 2) and (1, 4, 2) terms are
clearly resolved, together with the (2, 4, 1) glory and the barely
visible (2, 2, 3) second-order rainbow. The corresponding ray
trajectories are overlaid on the figure with grid ticks corre-
sponding to the incident ray impact parameter b = sin(0s;)
at intervals of Ab = 0.1. The resolution of the different Debye
terms improves further in Fig. 2(b) where we examined scat-
tering of a 5 fs pulse by a substantially larger coated sphere
with a;s = 30 ym and as3 = 40 ym. A number of weaker scat-
tering processes are now resolved as well. The improvement
in the resolution is due to the fact that ray scattering is a
better approximation to wave scattering as the particle size
increases.

Figure 3 is a magnified view of Fig. 1 for 200 fs < ¢ < 400 fs.
This illustrates the increasingly longer delay times of the (2, 2,
3), (2, 4, 3), and (2, 6, 3) Debye terms for near-axial incidence
due to 2 or 4 or 6 passes of the corresponding rays through the
coating. It also shows the rainbows of these Debye terms at
6 =~ 142°, 97° and 63°, which we call the aa, af, and g second-
order rainbows, respectively, where, as before, « indicates a
core/coating internal reflection and f indicates a coating/
exterior internal reflection. The af rainbow consists of the
two-fold degenerate contributions of Figs. 2(i) and 2(j) of
[1]. The strong scattered intensity at 6 = 0° in the interval
300 fs < t < 330 fs is due to the superposition and interference
of the surface wave forward glory of the (2, 4, 3) term and the
real ray forward glories of the (2, 6, 3) and (3, 4, 4) terms.

As mentioned above, the identifications of the dominant
contributions to the Aden—Kerker coated sphere time domain
scattering signature were made on he basis of ray scattering
predictions. In order to verify these identifications using wave
scattering, we computed the unpolarized scattered intensity
as a function of 6 and t using the partial wave amplitudes
of each Debye term (N,A,B) for N <3 as described in [1]
in place of the full Aden—Kerker partial wave scattering am-
plitude, and then summing over partial waves as in
Egs. (1a,1b). Each of the previous ray theory identifications
was verified by the Debye term partial wave sums. For the
pulse and coated sphere parameters of this section, the ana-
lysis of the various Debye term partial wave sums showed that
the terms (1, 2, 2) and (1, 4, 2) have first-order rainbows. The
terms (2, 2, 3), (2, 4, 3), and (2, 6, 3) have second-order rain-
bows, and the terms (3, 2, 4), (3, 4, 2), (3,4, 4), (3, 6,4), and (3,
8, 4) have third-order rainbows that we denote by aaa, afy,
aap, app, and ppp, respectively, where y indicates the internal
reflection R2!? at the core/coating interface with incidence
from the coating side. Glory scattering of nonaxial rays occurs
for the terms (1, 2, 0), (1, 2, 2), (1,4, 2), (2,4, 1), (2, 6, 3), (3, 2,
4), (3, 4, 0), and (3, 4, 2). The term (3, 4, 4) has two different
regions of forward glory scattering and will be discussed be-
low. Surface wave glory scattering occurs in the terms (0, 2,
1,2, 2,3),(2,4,3),(3,2,4),(3,4,0),(3,6,2),(3,6,4),and (3,
8, 4). It is not surprising that so many ray paths participate in
glory scattering since a large number of internal reflections
can easily produce a large range of scattering angles that pass
through 0° or 180° for nonaxial rays. As the number of internal
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Fig. 2. (Color online) (a) Scattered intensity for the pulse and coated
sphere parameters of Fig. 1 for 130° < 6 < 180° and 150 fs < ¢ < 230 fs
in the region of the first-order rainbow. Various ray trajectories as a
function of the incident ray impact parameter b are superimposed on
the figure; (b) Scattered intensity for the pulse parameters of Fig. 1 but
with a;5 = 30 um and as3 = 40 ym, which resolve additional structure
of the scattered intensity in the vicinity of the first-order rainbow.



P. Laven and J. Lock

20

40

60

80

100

Scattering angle 8(°)

160

180 F
200 250 300 350 400
Time (fs)

Fig. 3. (Color online) Scattered intensity for the pulse and coated
sphere parameters of Fig. 1 for 0° < 6 < 180° and 200 fs < ¢ < 400 fs
showing the behavior of the (2, 2, 3), (2,4, 3), and (2, 6, 3) Debye terms
and their aa, aff, and g second-order rainbows.

reflections increases, progressively less energy remains in the

pulse to be available for future transmissions or reflections,
making high-N scattering intrinsically dimmer than low-N
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scattering. The fact that the wave focusing of either rainbow
or glory scattering occurs in large number of high-N Debye
terms partially compensates for this energy decrease and per-
mits their visibility in Figs. 1-3.

As examples of some of the more interesting scattering fea-
tures of an individual Debye term, the time domain graph of
the twin first-order rainbows (1, 2, 2) and (1, 4, 2) is shown in
Figs. 4(a) and 4(b), respectively. The Descartes rainbow scat-
tering angles are 0 ~ 139° and 166°, respectively. The complex
ray [11] on the zero-ray side of the rainbow extends from the
rainbow relative maximum to smaller scattering angles and
smaller delay times. The contribution of rays in the two-ray
supernumerary region [12], and its continuation into surface
waves [13], extends from larger scattering angles, through the
glory region, to smaller angles (which in this case are yet lar-
ger deflection angles) and larger delay times. Figure 4(c)
shows the scattered intensity for the (3, 4, 2) Debye term,
which has the repeated ray path in 6 — ¢ space of (1, 4, 2). The
scattered intensity along the trajectory in (3, 4, 2) is weaker
than for (1, 4, 2) due to the extra internal reflection factors at
the core/coating interface.

Figure 5 is the time domain graph for scattering produced
by the (2, 2, 3) Debye term. The most interesting feature of this
figure is the complex ray glory of the aa second-order rainbow
at t = 190 fs. The Descartes rainbow angle for scattering by a
homogeneous sphere depends on the sphere refractive index
and the number of internal reflections. But since the rainbow
angle for a coated sphere depends on the core and coating
radii and refractive indices, as well as on the number of
the three different types of internal reflections, one has a
greater freedom in moving the rainbow angle around by chan-
ging various geometrical and physical parameters of the
coated sphere, and thus generating effects such as the com-
plex ray glory in Fig. 5. Figure 6 shows that the (3, 4, 4) Debye
term produces the aaf third-order rainbow at b = 0.93 and
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Fig. 4. (Color online) (a) Scattered intensity of the (1, 2, 2) Debye term for the pulse and coated sphere parameters of Fig. 1 showing the « first-
order rainbow; (b) Scattered intensity of the (1, 4, 2) Debye term showing the f first-order rainbow; (c) Scattered intensity of the (3, 4, 2) Debye

term, which has the same time domain trajectory as the (1, 4, 2) term.
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Fig. 5. (Color online) Scattered intensity of the (2, 2, 3) Debye term
for the pulse and coated sphere parameters of Fig. 1 showing the glory
at 6 — 180° and ¢t = 190 fs caused by the complex ray of the aa second-
order rainbow.
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6 = 20°. This rainbow consists of the three-fold degenerate
contributions of Figs. 2(p), 2(q), and 2(r) of [1]. As geometric
rays with impact parameters on the coated sphere of b =
0.7506 and b = 0.9968 result in forward scattering (6 = 0°),
Figure 6 also shows two forward glories. If the coated sphere
parameters were slightly changed from the values considered
here, the aaf rainbow could be moved to 8 = 0°, producing a
rainbow-enhanced forward glory [14]. The same effect occurs
for the p = 3 rainbow-enhanced back scattering glory and the
p = 4 rainbow-enhanced forward glory of a homogeneous
sphere when the refractive index is m = 1.180 and 1.465, re-
spectively. The two phenomena of Figs. 5 and 6 are thus dif-
ferent sections through the same overall rainbow-plus-glory
morphology. As some geometrical or physical parameter is
varied and the Descartes angle of a particular rainbow ap-
proaches either 0° or 180° and then passes through it, the com-
plex ray glory evolves into a rainbow-enhanced glory, which
then evolves into a pair of glories with a rainbow occurring at
an intermediate impact parameter.

3. COATED SPHERE WITH A CORE OF
VARIABLE RADIUS

Next we computed time domain scattering of a pulse with the
same parameters in Section 2 by a coated sphere with
as3 = 10 ym, but with the core radius increasing from a; =
0 ym (i.e., a homogeneous sphere with refractive index
m = 1.3333) to a;3 = 10 ym (a homogeneous sphere with re-
fractive index m = 1.5). Figures 7(a)-7(f) show this progres-
sion for a;; = 0, 2, 4, 6, 8, 10 pm for 0° < A < 180°. In Fig. 7(a)
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Fig. 6. (Color online) Scattered intensity of the (3, 4, 4) Debye term
for the pulse and coated sphere parameters of Fig. 1 showing the aap
third-order rainbow at b = 0.93 and 6 =~ 20°. As geometric rays with
impact parameters on the coated sphere of b = 0.7506 and b =
0.9968 produce forward scattering (6 = 0°), the (3, 4, 4) term also
causes two forward glories (at ¢ = 305 fs and ¢ = 308 fs).

the contribution of the 0 < p <4 Debye terms for a homoge-
neous sphere composed of coating material are clearly evi-
dent. The directly transmitted p = 1 rays have the critical
angle 6, = 82.82° and are continued to larger scattering angles
and delay times by electromagnetic surface waves. The p = 2,
3, and 4 rainbows occur at the Descartes angles 0, = 137.97°,
129.04°, and 41.60°, respectively.

Figure 7(b) shows the time domain plot for a;5 = 2 um. The
(0, 0, 0) external reflection term extends from 6 = 180°, t =
0 fsto @ = 0°, ¢ = 80 fs, with its distinctive inverted-V structure
at 6 ~ 0° produced by diffraction [9]. The nearly overlapping
(1, 2,0) and (0, 2, 1) terms occur for small 9 at slightly larger ¢.
The inverted-V structure of the (1, 2, 0) term has evolved from
the p = 1 transmission term for a homogeneous sphere [7].
The left half of the inverted-V is due to scattered rays that have
reflected off the core, and the right half is due to rays passing
through the coating and missing the core. The core/coating
surface waves of the (0, 2, 1) term for transmission through
both the coating and core begin at 6§ = 62.40° and occur at
slightly smaller delay times, have a steeper slope in the figure,
and damp out more slowly as a function of  than do the neigh-
boring coating/exterior surface waves of (1, 2, 0), which begin
at 0 = 82.82° occur at slightly larger delay times, have a smal-
ler slope in the figure, and damp out more rapidly. The (1, 2, 2)
term weakly appears for 6 = 180° and ¢ ~ 120 fs and merges
into the contribution of (0, 2, 1) surface waves. The rainbow
region of the (3, 4, 0) term has evolved from the p = 2 term for
ahomogeneous sphere as described in [7], and occurs here for
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Fig. 7. (Color online) Scattered intensity as a function of 6 and ¢ for the incident pulse and coated sphere parameters of Fig. 1 except the core

radius ay, is (2) 0, (b) 2, (c) 4, (d) 6, (e) 8, and (f) 10 um. Figure 7(a) describes an uncoated sphere with m = 1.3333 and Fig. 7(f) describes
an uncoated sphere with m = 1.5. See Media 1.

130° < 0 < 180° and ¢ = 190 fs. Yet longer delay times are domi-
nated by the rainbow region of the (5, 6, 0) and (7, 8, 0) terms,
which have evolved from the p =3 and p =4 terms of
Fig. 7(a) as described in [7].

In Fig. 7(c) the core has grown to a;3 = 4 ym. For 6 = 0°
and 70 fs <¢< 100 fs are the inverted-V structure of (0, 0,
0), followed by the inverted-V structure of (1, 2, 0), and finally
the (0, 2, 1) term. Again the core/coating surface waves of (0,
2, 1) have a steeper slope than do the coating/exterior surface
waves of (1, 2, 0). The contribution of the (0, 2, 1) surface
waves merge into the complex ray of the a rainbow of (1,
2, 2). The (1, 2, 2) term also contributes to the V-shaped glory
structure at @ = 180°, t = 145 fs. This is followed for 0 =~ 180°,
t=190 fs by a portion of (1, 4, 2) superimposed on the

rainbow region of (3, 4, 0). As before, yet larger delay times
are dominated by the rainbow region of (5, 6, 0) and (7, 8, 0).
Since the impact parameter of the p = 3 rainbow in Fig. 7(a) is
b = 0.95, large impact parameter rays for (5, 6, 0) continue to
participate in this second-order rainbow without being
blocked by the relatively small core. The inverted-V structures
at 0 = 0° and ¢ =~ 205, 242, 280 fs are the forward glories of the
5, 2, 6), (3, 4, 4), and (2, 6, 3) terms, respectively.

Figure 7(d) has ap=6pum. For 6=0° and
60 fs < ¢ <100 fs, the (0, 0, 0) term is followed by (1, 2, 0)
and finally (0, 2, 1). The (0, 2, 1) core/coating surface waves
with steeper slope and the (1, 2, 0) coating/exterior surface
waves with a smaller slope overlap and interfere for
40° <6 <100°. For 6~ 180° and larger delay times, the «
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rainbow of the (1, 2, 2) term is followed by the rainbow region
of (3, 4, 0) with a portion of (1, 4, 2) superimposed on it ex-
tending toward smaller 6 and larger ¢. The extension of (1, 2, 2)
starting at 6 = 180°, ¢ = 170 fs merges into (3, 2, 4) and then
into the forward glory region of (5, 2, 6) at @ = 0°, ¢ = 260 fs. At
6 = 100° t = 230 fs is the aff second-order rainbow region of
(2,4, 3),and at 6 ~ 130°, ¢ =~ 230 fs is the second-order rainbow
region of (5, 6, 0) as it appeared in Figs. 7(a—c). Note the (7, 8,
0) glory, which has not changed since Fig. 7(a).

Figure 7(e) has a;3 = 8 ym. The analysis of this figure is
very similar to that of Fig. 1 where a;5 = 7.5 ym. It should
be noted that the af and g second-order rainbows of (2, 4,
3) and (2, 6, 3) are quite visible, but the aa second-order rain-
bow of (2, 2, 3) is too dim to be seen. Lastly, for a;; = 10 ym in
Fig. 7(f), the structures of Fig. 7(e) merge into the various 0 <
p £ 3 Debye terms of a homogeneous sphere composed of
core material. The critical angle of the p = 1 transmitted rays
is 6, = 96.38° and the Descartes angle of the p = 2 and 3 rain-
bows are 6 = 157.16° and 93.13°, respectively. The p =4
rainbow is off the figure to the right. (See Media 1.)

Figures 8(a)—(8f) show the same progression of core radii,
but in the vrestricted region 120°<0<180° and
130 fs < £ < 220 fs, illustrating the evolution of the first-order
rainbow of a coated sphere. Figure 8(a) shows the p = 2 rain-
bow of a homogeneous sphere of refractive index m = 1.3333.
The Descartes rainbow angle is 8, = 137.97° and the impact
parameter of the rainbow ray is b = 0.861. Thus the core will
have to grow to a = 6.5 ym before the rainbow ray is blocked
by it and the rainbow is extinguished. The maximum rainbow
intensity in Fig. 8(a) occurs at @ ~ 142°. Given that the Fourier
spectrum of the incident pulse has been integrated over in pro-
ducing the maximum, this shift is in reasonable agreement
with the Airy shift of the rainbow maximum due to finite par-
ticle size [15]. The theoretical shift is 6 -6, =4.7° for
a =10 ym, m = 1.3333, and A = 0.65 ym, the central wave-
length of the Fourier spectrum.

Figure 8(b) has a;» = 2 ym. What had been the p = 2 rain-
bow in Fig. 8(a) is now contained in the (3, 4, 0) Debye term,
which is also shown separately in Fig. 9 and will be discussed
in detail later. As mentioned above, the Descartes rainbow an-
gle is still 8, = 137.97°. The (3, 4, 0) core/coating surface
waves pass through 6 = 180° at ¢ ~ 180 fs and continue with
a steep slope to larger delay times as indicated by “A” in
Fig. 8(b) with the (1, 4, 2) Debye term weakly superimposed
on them. The (3, 4, 0) coating/exterior surface waves pass
through 0 = 180° at ¢ = 192 fs and continue with a smaller
slope to larger delay times as indicated by “B” in Fig. 8(b).

Figure 8(c) shows time domain scattering for a;, = 4 pm.
The (3, 4, 0) rays that miss the core continue to participate in
rainbow scattering with the Descartes angle 6, = 137.97°.
This Debye term also dominates the back-scattering region
for 170 fs < ¢ <200 fs. As was the case in Fig. 8(b), the (3,
4, 0) core/coating surface waves plus a portion of (1, 4, 2) pass
through 6 = 180° at ¢ = 186 fs and continue to smaller scatter-
ing angles and larger delay times with a steep slope, as indi-
cated by “A” in Fig. 8(c), whereas the (3, 4, 0) coating/exterior
surface waves start at 6= 166°, t= 182 fs, pass through
6 = 180° at ¢ = 192 fs, and continue to smaller scattering an-
gles and longer delay times with a smaller slope, as indicated
by “B” in Fig. 8(c). Large impact parameter (1, 2, 2) rays and
their continuation into surface waves produce the V-shaped
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structure extending from ¢ = 130 fs to ¢ = 165 fs. The (1, 2, 2)
surface waves interfere with the complex ray of the (3, 4, 0)
rainbow for 120° < § < 135° and ¢ = 165 fs.

In Fig. 8(d) with a;5 = 6 um, an increasingly large fraction
of the incident rays penetrate into the larger core giving more
structure to (1, 2, 2) and (1, 4, 2), including the a and g first-
order rainbows at 0 = 127° and 175°, respectively. The con-
tribution of the (1, 2, 2) core/coating surface waves is the
V-shaped structure that starts at 0 = 142°, ¢ ~ 154 fs, passes
through 6 = 180° at ¢ = 172 fs, and extends to smaller scatter-
ing angles and longer delay times. The first ray that enters the
coating and misses the core now has an impact parameter b =
0.8 that is still less than the impact parameter b = 0.861 of the
first-order rainbow in the coating. As a result, the first order
rainbow is still present with its maximum intensity at 0 = 142°.
The (3, 4, 0) rays that miss the core by progressively larger
distances extend out to 6 = 166°, ¢ ~ 182 fs, at which point they
generate (3, 4, 0) coating/exterior surface waves. What was
originally the p = 2 rainbow for a homogeneous sphere in
Fig. 8(a) has now evolved into three separate first-order rain-
bows at 6 = 127°, 142° and 175°. The original 142° component
is in the process of being slowly extinguished as a5 increases,
while the new a and # components at 8 = 127° and 175° are
becoming increasingly dominant.

When a;; = 8 ymin Fig. 8(e), all incident rays that enter the
coating now penetrate into the core. This fully extinguishes all
(3, 4, 0) scattering that formerly took place solely in the coat-
ing, including the former p = 2 rainbow. The (1, 2, 2) and (1, 4,
2) first-order rainbows have migrated to € = 147° and 167°, and
the a rainbow of (1, 2, 2) is now nestled between the (0, 2, 1)
surface waves and the contribution of the (2, 4, 1) term. As a,»
increases further, the (1, 2, 2) and (1, 4, 2) rainbows continue
to approach each other, and in Fig. 8(f) with a;5 = 10 ym they
have now completely merged into the p = 2 rainbow of a
homogeneous sphere composed of core material, having
the Descartes angle 6, = 157.16°. The peak intensity at 0 =
161° is again in reasonable agreement with the theoretical Airy
shift of § — 0 = 3.57°. The details of this merging were stu-
died in [4]. A similar transition occurs for the second-order
rainbow, as is suggested in Figs. 3 and 7(c)—(7f). For a small
core, the remnant of the p = 3 rainbow of a homogeneous
sphere composed of coating material appears in the (5, 6,
0) term. For larger core radii, new aa, af and pf second-order
rainbows form in the (2, 2, 3), (2, 4, 3), (2, 6, 3) terms while the
original (5, 6, 0) rainbow slowly fades away. As a5 — a3, the
three new components merge into the p = 3 rainbow of a
homogeneous sphere composed of core material.

Electromagnetic surface waves are generated by grazing
incidence at both the core/coating and coating/exterior inter-
faces. The scattered field of the core/coating surface wave
was predicted in [1] to have the attenuation factor
exp[-(myka,)V?3Y2X (0 - 0,)/2¥3], where 6, is the critical
scattering angle and —X is the first zero of the Airy function,
with X = 2.3381. This result is analogous to the attenuation
factor exp[—(mgkays)V33V2X (0 - 6,)/2¥3] of the scattered field
of the coating/exterior surface wave [16,17]. Time domain
scattering of the (3, 4, 0) Debye term is shown in Figs. 9(a—c)
for ass = 10 ym and a5 = 2.5, 5 and 7.5 um, respectively. For
incident impact parameters in the range 0 <b < 0.333, the
(3, 4, 0) rays in Fig. 9(a) produce a deflection angle that in-
creases from 6 = -180° for axial incidence to § = +161.0°
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Fig. 8. (Color online) Scattered intensity as in Fig. 7 but for 120° < 0 < 180° and 130 fs < ¢ < 220 fs in the vicinity of the first-order rainbow showing

its evolution for core radius a5 of (a) 0; (b) 2; (c) 4; (d) 6; (e) 8; and (f) 10 ym. The features marked “A” are caused by core/coating surface waves,
whereas the features marked “B” are caused by coating/exterior surface waves.

with infinite slope there, for grazing incidence on the core and
the generation of core/coating surface waves. For
0.333 < b < 1, the partial waves corresponding to these inci-
dent rays miss the core by a progressively larger distance,
but still interact with it via tunneling reflection with the am-
plitude R2'2 — 1[16]. In this impact parameter interval, the ray
deflection angle decreases from 6 = +161.0° to the Descartes
rainbow angle of 0, = 137.97°, and then increases back to
6 = 165.6° for grazing incidence on the coating and the gen-
eration of coating/exterior surface waves. This is exactly what
happened for p = 2 scattering by a homogeneous sphere with
m = 1.3333. Although Fig. 9(a) shows no indication of a rela-
tive maximum of this Debye term at § = +161.0°, it would be

of interest to determine whether this evolves into an addi-
tional first-order rainbow [18], in the sense of producing par-
tial focusing of the scattered light, if the sharp core/coating
interface at a;, = 2.5 ym were replaced by a narrow radial
interval of decreasing refractive index.

The (3, 4, 0) Debye term simultaneously exhibits two differ-
ent types of surface waves. In Fig. 9(a), the core/coating
surface waves (marked as “A”) pass through ¢ = 180° at ¢ =
180 fs and extend to smaller scattering angles and larger time
delays with a steep slope, while the coating/exterior surface
waves (marked as “B”) pass through 6 = 180° at ¢ = 192 fs and
also extend to smaller scattering angles and larger time de-
lays, but with a smaller slope.
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Fig. 9. (Color online) Scattered intensity of the (3, 4, 0) Debye term as a function of 8 and ¢ for the incident pulse and coated sphere parameters of
Fig. 1, except that the core radius a,; is (a) 2.5, (b) 5 and (c) 7.5 ym, showing the evolution of the core/coating surface waves (marked as “A”) and
coating/exterior surface waves (marked as “B”) of this Debye term. In (c) the two types of surface waves coalesce. The (3, 4, 0) ray trajectory as a
function of the incident ray impact parameter b is superimposed on the figures.

In Fig. 9(b) for a;3 = 5 um, the coating/exterior surface
wave has not changed from Fig. 9(a) since ay3 has been held
constant. But the slope of the core/coating surface wave pro-
gressively decreases and the two surface wave contributions
start to merge. For a5 = 7.5 ym in Fig. 9(c), the incident rays
that graze the coating/exterior interface and are transmitted
into the coating also graze the core/coating interface. As a re-
sult, the same incident rays create both sets of surface waves,
and the merging of the two surface wave contributions
becomes complete.

4. CONCLUSION

The (N, A, B) parameterization of the Debye series terms in [1]
proves to be very useful for interpreting time domain scatter-
ing of a plane wave by a coated sphere. The great virtue of
time domain scattering is that it separates into different delay
times all the different scattering mechanisms that contribute
at the same scattering angle. Many (N, A, B) Debye series
terms were easily identified in different regions of 0 — ¢ space
in the time domain graph, both on the basis of ray tracing as-
signments and on summing the appropriate partial wave am-
plitudes. Using the combined power of time domain scattering
methods and the (N, A, B) organization of the Debye series,
the wonderful richness of the structure to be uncovered in
scattering by a coated sphere is clearly evident.

If a homogeneous sphere were to continuously change its
refractive index relative to its surroundings, perhaps by pla-
cing a solid sphere in a liquid of controlled temperature
[14], the first-order rainbow would continuously and smoothly
evolve from one angle to another. But if the transition were to
occur by either the growth of a seed particle within a sphere
or the growth of a coating around a core, the first-order rain-
bow would undergo a more complicated and delicate evolu-
tion. Before the old rainbow fades out, a number of new

rainbows start to form, which then migrate and eventually
merge into the final rainbow. Again the power of time domain
scattering methods coupled with the (IV, A, B) organization of
the coated sphere Debye series illustrate this evolution in a
remarkably clear way.
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