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Scattering of light from homogeneous spherical particles can exhibit sharp resonances as functions of particle size, wavelength or 
refractive index. Such resonances, usually known as morphology-dependent resonances (MDRs) or whispering gallery modes 
(WGMs), have been exhaustively studied using Mie theory for many years. This paper demonstrates that the Debye series 
expansion provides a succinct and easily-understood representation of these resonances: for example, the Debye coefficient R121

n 
determines (a) the exact conditions for resonance, (b) the number of terms required to replicate the Mie result and (c) the Q factor 
of the resonance.  
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1. INTRODUCTION 

Scattering of light from homogeneous spherical particles can 
exhibit sharp resonances [1-19], often known as morphology-
dependent resonances (MDRs) or whispering gallery modes 
(WGMs). Such resonances are very dependent on particle 
size, wavelength and refractive index.  

Most theoretical studies of these resonances have been 
based on Mie calculations, but this paper employs the Debye 
series expansion [20-22]. The Debye series can be used to 
identify scattering contributions of order p. The p = 0 term 
corresponds to diffraction and external reflection, whereas 
the p = 1 term represents transmission through the sphere. 
Terms with p > 1 correspond to waves that have been 
subjected to p – 1 internal reflections. Despite its similarity to 
geometrical optics, it must be emphasized that the Debye 
series is not an approximation: the sum of the terms from p = 
0 to p = ∞ gives exactly the same result as the Mie 
calculation. Some studies of resonances [9, 13-14] have used 
the Debye series to remove the background scattering caused 
by specific dominant low-order terms (such as p = 2 and p = 
11), thus revealing the resonances more clearly.  

The overall aim of this paper is to examine the role of the 
entire Debye series in the formation of resonances. Section 2 
of this paper reviews the properties of these resonances based 
Mie calculations. Section 3 analyzes the number of terms in 
the Debye series needed to approximate the Mie results near 
some example resonances. Section 4 analyzes the amplitudes 
and phases of the scattering contributions from individual 
terms of the Debye series in the vicinity of resonances. 
Section 5 highlights the importance of the coefficient R121

n in 
the Debye series expansion in determining the characteristics 
of individual resonances. Section 6 offers some conclusions. 

2. MIE CALCULATIONS 

In Mie calculations, the scattering amplitudes S1(θ) and S2(θ) 
for TE and TM polarizations respectively are obtained by the 
partial wave sums:  
               nmax 
   S1(θ) = ∑ {(2n+1) / [n (n+1)]} [an πn(θ) + bn τn(θ)] (1a) 
              n = 1 
               nmax  
   S2(θ) = ∑ {(2n+1) / [n (n+1)]} [an τn(θ) + bn πn(θ)] (1b) 
               n = 1 

where the angular functions are: 

   πn(θ) = [1/sin(θ)] Pn
1[cos(θ)] (2) 

   τn(θ) = (d/dθ) Pn
1[cos(θ)] (3) 

Mie resonances are clearly visible in Fig. 1 which plots |S1(θ)| 
for the arbitrary scattering angle θ = 150° as a function of 
size parameter x = 2πr/λ, where r is the radius of the 
homogeneous sphere of refractive index m = 1.3333 and λ is 
the wavelength of the incident light. 

Resonances can be characterized by n (the partial wave 
number) and by l (the number of radial modes), as indicated 
at the top of Fig. 1. Some of the resonances (e.g. at x = 
98.1312 and x = 98.1932) coincide with local maxima of 
|S1(θ)|, whereas other resonances (e.g. at x = 99.2567) 
coincide with local minima. The resonances at x = 98.4732 
and x = 99.7511 have a local minimum and a local maximum.  

The Mie results shown in Fig. 1 have been re-plotted in 
Fig. 2 as a parametric curve plotting |S1(θ)| together with the 
phase ϕ of S1(θ). The parametric curve includes several near-
circular features, each of which seems to be associated with 
one of the Mie resonances shown in Fig. 1. Another oddity is 
that each of the resonances is positioned at the extreme left or 
extreme right of these nearly-circular features. 
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Fig. 1 Results of Mie calculations of scattering amplitude |S1(θ)| at scattering angle θ = 150° as a function of size parameter x for a spherical particle of refractive 
index m1 = 1.3333 in a medium of refractive index m2 = 1 calculated at intervals of Δx = 10-6. The parameters of each resonance (partial wave number n and 
radial mode l) are shown at the top of the graph. The inset box shows the resonance at x = 98.4732 in much greater detail. The resonances at x = 98.5097 (n = 
123, l = 1) and x = 99.2784 (n = 124, l = 1) do not appear on the red curve because (a) the widths of these resonances are less than Δx and (b) the Mie calculations 
according to Eq. 1(a) have been terminated at nmax = x + 4.05 x1/3 + 2 ≈ 121.

 
Fig. 2  Using the same conditions as Fig. 1 except that Δx = 5 × 10-8, the Mie 
results are shown as a parametric curve from x = 98 to x =100 showing the 
amplitude and phase of S1(150°). The marked values of x correspond to the 
resonances shown in Fig. 1. Detailed inspection of the path followed by the 
blue curve identifies local maxima of |S1(150°)| (indicated by red dots) and 
local minima of |S1(150°)| (indicated by green dots).  

Fig. 2 reinforces the idea that some Mie resonances can 
appear as local maxima, local minima or both. Following the 
curve in Fig. 2 starting at x = 98, the first resonance occurs at 
x = 98.1312 slightly before the red dot which indicates a local 
maximum. The next resonance at x = 98.1932 occurs just 
before another red dot at x ≈ 98.19321 corresponding to a 
local maximum.  The next resonance at x = 98.4732 is near a 
green dot corresponding to a local minimum. Similarly, the 
resonance at x = 98.99 coincides with a local maximum, 
whilst the resonance at x = 99.2567 is very near to a local 
minimum. However, the resonance at x = 99.7511 is 
accompanied by a local minimum at x = 99.7444 and a local 
maximum at x = 99.7594. 

It has long been known [3-7] that TM and TE resonances 
of order n are respectively associated with the an and bn terms 
in the Mie calculations. This is illustrated in Fig. 3 which 
shows that the TE resonance at x = 98.1312 (n = 105, l = 4) is 
due to the b105 term, whereas the TE resonance at x = 98.1932 
(n = 110, l = 3) is due to the b110 term. Furthermore, Fig. 4 
confirms that these resonances coincide with the imaginary 
part of bn being zero (in both cases, the value of bn is 1).  

The calculations reported in this paper have been made 
for θ = 150°, but the amplitudes of TE resonances as a 
function of θ are determined by the term bn τn(θ) in Eq. 1(a) 
with bn = 1 at resonance. As an example, Fig. 5 plots S1(θ) for 
140° ≤ θ  ≤ 150° for the n = 110 resonance. As τn(θ) is real, 
S1(θ) is also real with positive and negative local maxima. 
Note that the n = 110 resonance disappears at certain values 
of θ, such as θ ≈ 149.46° and θ ≈ 151.09°. 
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Fig. 3 (a) Mie results for S1(150°) showing a broad resonance at x = 98.1312 
(n = 105, l = 4) and a narrow resonance at x = 98.1932 (n = 110, l = 3).  
(b) Setting b105 = 0 in the Mie calculation removes the broad resonance.  
(c) Setting b110 = 0 removes the narrow resonance. (d) The two resonances 
are caused by the b105 and b110 terms respectively. 

3. THE DEBYE SERIES 
The Debye series [20-22] defines the values of an and bn used 
in Eqs. (1a) and (1b) in a form that isolates specific scattering 
mechanisms of order p, as shown in Eq. (4) below: 
                                                                         ∞ 

   an, bn = (1/2) [1 – R212
n – ∑ T

21
n (R

121
n)

p-1
 T

12
n] (4) 

                                                                                                            p=1 

As Mie resonances seem to be the combined result of 
many terms in the Debye series (rather than being caused by 
a single value of p), it is not immediately obvious how the 
Debye series can be used to analyze Mie resonances.  

 

Fig. 4 (a) The broad resonance at x = 98.1312 (n = 105, l = 4) occurs when 
the imaginary part of b105 = 0.  (b) The narrow resonance at x = 98.19319 (n 
= 110, l = 3) occurs when the imaginary part of b110 = 0. 

 

Fig. 5 Graph of S1(θ) for the n = 110 resonance as a function of θ. Note that 
S1(θ) is real, with positive and negative maxima separated by about 1.63°. 

One approach is shown in Fig. 6, which compares the Mie 
results (shown in red) with the sum of the Debye series 
contributions (shown in blue) for p = 0 through p = pmax for 
various values of pmax. If the Mie results exactly matched the 
Debye series results, the red lines would not be visible 
because they would have been overwritten by the blue lines. 

Fig. 6(a) shows that the match is far from perfect for pmax 
= 100: the blue line reproduces the general trend of the red 
line in the vicinity of the broad resonance at x = 98.1312, but 
it entirely misses the narrow resonance at x = 98.1932. Figs. 
6(b)-(f) demonstrate that increasing the value of pmax for the 
Debye series gives progressively closer matches to the Mie 
result. In particular, Fig. 6(b) shows that the broad resonance 
at x = 98.1312 can be approximated by the first 200 terms of 
the Debye series, but Fig. 6(f) suggests that the narrow 
resonance at x = 98.1932 requires slightly more than 10,000 
terms of the Debye series. 
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Fig. 6 Comparisons of Mie results for S1(150°) with the Debye series 
contributions from p = 0 through p = pmax. The broad resonance at x = 
98.1312 can be closely approximated by using the first 200 terms of the 
Debye series, but the narrow resonance at x = 98.1932 requires slightly more 
than 10,000 terms. 

4.  ANALYSING THE DEBYE SERIES 

Fig. 7 displays the Debye series results in an entirely 
different way: each dot plots the value of S1(θ) in terms of its 
magnitude |S1(θ)| and phase ϕ for x = 98.1 and θ = 150° for 
every value of p from p = 0 to p = 20,000. This diagram also 
shows the Mie result at |S1(θ)| = 32.9 and ϕ = 357.9°. The 
dominant contributions to the Mie result are from the p = 2, p 
= 0 and p = 7 terms in the Debye series. The dots are also 
color-coded in accordance with the scale shown to the right 
of Fig. 7. The arrangement of the colors of the dots in the 
diagram suggests that, when p is large, the amplitudes of the 
contributions generally decrease as p increases, but careful 
examination indicates that there are many exceptions to this 
rule. Although Fig. 7 shows Debye series results for values of 
p ≤ 20,000, Fig. 6(b) shows that pmax = 200 is sufficient to 
reproduce the Mie result when x = 98.1. Looking at Fig. 7, it 
is clear that the phases of the high-order terms are distributed 
between 0° and 360°. If they were distributed uniformly in 
terms of phase, destructive interference would occur because 
a contribution with phase ϕ would be cancelled by another 
contribution of similar amplitude with phase ϕ ± 180°. In 
such cases, the high-order terms would have no effect on the 
sum. 

 

 
 
Fig. 7 Results for x = 98.1 and m1 = 1.3333 in which the dots represent the 
amplitude and phase of the contributions to S1(150°) for every term in the 
Debye series from p = 0 through p = 20,000. The dots corresponding to 0 ≤ p 
≤ 50 have been identified by the value of p. The colors of the dots indicate 
the value of p according to the scale at the right of the diagram. The Mie 
result is also shown at |S1(150°)| = 32.9 with phase ϕ = 357.9°.  
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Fig. 8 As Fig. 7 but showing results for values of x in the vicinity of the resonance at x = 98.19319. Note that the colored dots seem to 
appear as a clockwise spiral when x < 98.19319 and as a counterclockwise spiral when x > 98.19319.  Supplemental Material: A more 
detailed animated version of this figure is available at http://www.philiplaven.com/Fig_8.html. 

The value of x = 98.1 used in Fig. 7 was selected because it is 
not near a Mie resonance. What happens near Mie 
resonances? Fig. 8 is a set of diagrams similar to Fig. 7 
illustrating the effects on the amplitudes and phases of the 
Debye series contributions for 0 ≤ p ≤ 20,000 as x is 
increased from 98.191 to 98.1938. The amplitudes do not 
seem to vary much, but the individual phases change 
dramatically near the (n = 110, l = 3) resonance at x = 
98.19319 where the phases of the Debye terms seem to 
“congregate” together.  Very few of the dots are in the left 
side of Fig. 8(d) (i.e. with phases between 90° and 270°) 
compared with those in the right side (i.e. with phases 
between 270° and 360° or between 0° and 90°). Examination 
of Fig. 8(d) suggests that this concentration is very 
pronounced for the yellow dots (representing Debye series 
terms with 4,000 ≤ p ≤ 5,999), the green dots (6,000 ≤ p ≤ 
7,999) and the cyan dots (8,000 ≤ p ≤ 9,999). This impression 
is confirmed by Fig. 9(a) in which the phases of the Debye 

series contributions for x = 98.19319 have been plotted as a 
function of p. This diagram shows a startling absence of red 
dots in the zone centered on ϕ = 180° and p ≈ 6,000. As 
demonstrated in Fig. 3, the b110 term is responsible for this 
particular resonance. The phases of the b110 contributions are 
plotted as blue dots in Fig. 9(a) appearing as a blue straight 
line very close to 360°.  

The amplitudes of the Debye series contributions are 
plotted as a function of p in Fig 9(b). The red dots show no 
obvious pattern as a function of p, but the straight blue line 
shows that the contributions from the b110 term reduce with 
each successive value of p. However, Fig. 9(b) also shows 
that the contributions from the b110 term are dominant when p 
≈ 6000. As shown by Fig. 9(a), all of the b110 contributions 
have phases close to 360°, thus explaining why the red dots 
in Fig. 9(a) are clustered around 360° (or 0°) when the b110 
contributions are dominant. 
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Fig. 9 Plots of the Debye series contributions to S1(150°) for the n =110 resonance at x = 98.19319 as a function of p showing (a) the 
phases and (b) the amplitudes. The red dots show results from all partial waves, whereas the blue dots show only results from the b110 term 
corresponding to the n =110 partial wave. 

 
Fig. 10 Calculations for x = 98.19319 in which the dots represent the amplitudes and phases of the contributions to S1(150°) from every term in the Debye series 
from p = 0 through p = 20,000 (using the color scale shown in Fig. 7). Diagram (a) shows results from the full Debye series, together with the Mie result at 
|S1(150°)| = 51.47 and ϕ = 11.04°, whereas (b) shows results obtained by setting b110 = 0, with the Mie result at |S1(150°)| = 31.72 and ϕ = 18.13°. 

Fig 10 explores the effects of the b110 term on the Debye 
series results at this resonance: Fig. 10(a), which is an 
enlarged version of Fig. 8(d), is very different to Fig. 10(b) 
where the b110 term has been set to zero. The uneven 
distribution in Fig. 10(a) is obviously caused by the b110 term. 

The results shown in Fig. 10 have been combined in Fig. 
11 by plotting the cumulative contribution made by each term 
p in sequential order starting from p = 0 though p = 20,000. 
Results for the full Debye series are given in Fig. 11(a), 
which includes an extraordinary horizontal line pointing 
towards the Mie theory result. In essence, Fig. 11(a) is the 
sum of the two parts of Fig. 11(b) – demonstrating that the 

horizontal line is caused by the b110 term, corresponding to 
the partial wave n = 110.  

Fig. 11(a) identifies the dominant p = 0, 2, 3, 6 and 7 
terms, as well as showing that very high-order terms are 
responsible for the horizontal line. On the other hand, the 
upper part of Fig. 11(b) shows that terms with p > 200 make 
no significant contribution to the pattern when b110 = 0. The 
fact that the multi-colored lines in Fig. 11 (a) and (b) are 
straight when p is large suggests the scattering contributions 
from different values of p are in phase. As these lines are also 
horizontal, it seems that the average phase of these 
contributions is very close to 0°.  
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Fig. 11 The cumulative sum of the Debye series contributions to S1(150°) in sequential order of p have been plotted using a linear scale for x = 98.19319. 
Diagram (a) plots results from the Debye series for all partial waves, showing how increasing the value of p up to 20,000 causes the Debye result to approach the 
Mie result of |S1(150°)| = 51.47 and ϕ = 11.04°. The multi-colored line in (b) shows the Debye results for p up to 20,000 due solely to the partial wave n = 110. 
The upper curve in (b) shows that partial waves other than n = 110 are responsible for the dominant low-order terms (e.g. p = 0, p = 2 and p = 7) but they make 
no significant contribution when p > 200. 

Fig. 9 demonstrated that, even at resonance, the phases of 
the very high-order terms for the full Debye series are 
typically not close to 0°. This anomaly is evident in Fig. 12 
which is a much-magnified version of the straight line in Fig. 
11(a) for values of p ≈ 18,000, demonstrating that the 
contributions made by individual values of p exhibit dramatic 
variations in amplitude and phase. By comparison, the 
straight line in the lower part of Fig. 11(b) is very well-
behaved since all of the contributions from the p terms are 
precisely in phase, resulting in a smooth straight line. Despite 
the detailed differences in shape, the two sets of horizontal 
lines in Fig. 11 have the same overall length, confirming that 
the net effect of contributions with p > 200 is zero when the 
b110 term is ignored. 

Recalling that Fig. 11 has been calculated for the 
resonance condition at x = 98.19319, Fig. 13 shows what 
happens at other values of x close to this resonance. Note that 
the multi-colored lines display clockwise spirals when x < 
98.19319 and counterclockwise spirals when x > 98.19319. 
Although the shapes of the multi-colored lines in Fig. 13 are 
critically dependent on x, the rest of the diagram does not 
appear to change with x, at least over the limited range of x 
used in Fig. 13. The almost-circular blue line in Fig. 13 has 
previously been seen in Fig. 2 in results from Mie 
calculations. The explanation of this feature becomes obvious 
in Fig. 13: it is simply the locus of the end-points of the 
Debye series calculations when pmax is sufficient to replicate 
the Mie result in the vicinity of the resonance.  

 

Fig. 12 A magnified view of the “straight line” in Fig. 11(a) in the vicinity of 
p ≈ 18,000 using a magnification factor of 105. Although the phases of the 
individual scattering contributions vary wildly, the horizontal line in Fig. 
11(a) extending to the right towards the Mie result indicates that the average 
phase is close to 0°. 

 

Fig. 13 As Fig. 11(a) except that it shows results for selected values of x 
around the resonance at x = 98.19319. The dominant contributions to non-
resonant scattering are marked by the values of p = 0, 2, 3, 6 and 7. The blue 
almost-circular feature shows the locus of the Mie results as seen in Fig. 2. 
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In Fig. 13, the resonance at x = 98.19319 is at the extreme 
right of the almost-circular feature. However, Fig. 2 reminds 
us that some resonances (e.g. at x = 98.99) are on the extreme 
left of the almost-circular feature. This difference is caused 
by the τn (θ) term in Eq. (1): for TE resonances, increasing p 
causes the horizontal straight lines to extend to the right when 
τn (θ) > 0 and to the left when τn (θ) < 0.  

5. THE ROLE OF R
121

n  IN RESONANCES 

Fig. 11 indicates that the Mie resonances of order n are 
caused by the Debye series terms of order n for p > 0 being in 
phase with each other. In Eq. (4) for the Debye series, the 
expression –T

21
n (R121

n)
p-1

 T
12

n for p > 0 corresponds to 
transmission through the sphere with p – 1 internal 
reflections. Note that all of these coefficients (T21

n T
12

n and 
R

121
n) are represented by complex numbers. To achieve 

resonance, each p + 1 term must be in phase with the p term, 
which implies that R

121
n must be positive and real (i.e. the 

imaginary part of R121
n must be zero). 

This differs from the widely accepted criterion [3, 6, 7, 
23, 24] that TE resonances of order n occur at the value of x 
where the real part of bn is 1 and imaginary part of bn is zero. 
Given this discrepancy, it is worth examining some 
numerical results: The two multi-colored lines in Fig. 14 
show the Debye series approximations to the Mie results for 
b110 as p is increased from zero to 20,000 for x = 
98.1931901251548 where Im(b110) = 0 and for x = 
98.19319011687 where Im(R121

110) = 0. Both lines start at 
b110 = 1.37×10-4 + i 4.64×10-5 when p = 0, but they diverge as 
p increases. The upper line curves towards b110 = 1, whereas 
the lower line is straight because all of the terms are in phase 
when p > 1. The vertical scale in Fig. 14 has been greatly 
exaggerated to highlight the differences in these curves. It 
also demonstrates the “horizontal” straight lines noted in 
Figs. 11 and 13 are not quite horizontal: in this case, the 
difference is 0.0053° which is caused by the product -T21

110 

T
12

110 in Eq. (4).  

 

Fig. 14 Cumulative results from Debye series calculations of b110 for p= 0 
through p = 20,000 for x = 98.1931901251548 where Im(b110) = 0 and for x = 
98.19319011687 where Im(R121

110) = 0. The vertical scale representing the 
imaginary values of b110 has been exaggerated by a factor of 5,000 to 
highlight the differences between the two curves. 

There is no practical difference in the values of x 
predicted by the two criteria of Im(bn) = 0 and Im(R121

n) = 0. 
Nevertheless, the criterion based on R

121
n seems preferable 

because the concept of resonance is intrinsically linked to 
many terms being in phase with each other. Furthermore, as 
shown below, various characteristics of resonances are 
dependent on R121

n. 
Increasing p by 1 reduces the scattered amplitude by the 

factor of |R121
n|, as indicated in Table 1 using the calculated 

numerical value of R
121

110 ≈ 0.999727 corresponding to the 
resonance at x = 98.19319 where n = 110 and l = 3. 

Table 1 Relative amplitudes of the p terms when |R121
n| = 0.999727. 

p |R121
n|

p-1 

1 0.999727 

2 0.999454 

10 0.997273 

100 0.973061 

1,000 0.761026 

5,000 0.255268 

10,000 0.065162 

20,000 0.004246 

 
Although Table 1 shows that |R121

n|
p-1 becomes very small 

for large values of p, Eq. (4) shows that the Mie result is 
proportional to the sum to infinity of this geometric 
progression. As discussed in Sec. 3, it is useful to know how 
many terms of the Debye series are needed to replicate the 
Mie result. For example, if we want the amplitude of the 
Debye series result to be a fraction k of the amplitude of the 
Mie result at resonance, the required number of terms pmax is 
given by: 

pmax ≈ log[1 – k] / log[|R121
n|]   (5) 

Applying Eq. 5 for k = 0.99 at each of the resonances 
shown in Fig. 1 gives the results shown in Table 2. The 
calculated values of pmax = 268 and pmax = 16,683 for the first 
two resonances listed in Table 2 are consistent with the 
estimates from Fig. 6 of  pmax ≈ 200 and pmax > 10,000 
respectively. Table 2 also indicates that R

121
n decreases as l 

increases, resulting in extremely high values of pmax for the 
two resonances with l = 1. 

Lock [9] noted that the width δx (FWHM) of the 
amplitude of the resonance can be calculated by: 

δx = 4 arcsin [(1 - |R121
n|)/2 × √(3/|R121

n|)]  (6) 

Having determined δx, it is simple to determine the Q 
factor for each resonance using the relationship Q = x/δx. For 
example, looking at the resonances listed in Table 2, the 
calculated values of Q vary between 1,650 (for n = 105 and l 
= 4) and 5.73×1011 (for n = 124 and l = 1). 
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Table 2 Calculations of pmax and Q for the resonances listed in Fig. 1 

x n l |R121
n| pmax  

for k = 0.99 
Q 

98.13119 105 4 0.982977088896 268 1,650 

98.19319 110 3 0.999726949302 16,863 1.04E+05 

98.47316 116 2 0.999999428669 8.06E+06 4.98E+07 

98.50970 123 1 0.999999999936 7.23E+10 4.44E+11 

98.94137 106 4 0.984903176617 303 1,878 

98.98997 111 3 0.999768766066 19,913 1.24E+05 

99.25671 117 2 0.999999533135 9.86E+06 6.14E+07 

99.27838 124 1 0.999999999950 9.15E+10 5.73E+11 

99.75111 107 4 0.986634116076 342 2,140 

99.78645 112 3 0.999804341222 23,534 1.47E+05 

 
It is important to recognize that the results shown in Table 2 
represent ideal results. For example, the calculations assume 
that the spherical particle is assumed to be non-absorbing (i.e. 
the imaginary part of the refractive index is zero). Any 
absorption within the particle would reduce the value of 
R

121
n, thus reducing the values of pmax and Q. Furthermore, as 

shown in [25, 26], the quality of resonances can be degraded 
by various other “real-world” mechanisms. 

6. CONCLUSIONS 

As Mie resonances are caused by the combined effects of 
many terms in the Debye series, it is not obvious how the 
Debye series can be used to analyze these resonances. This 
paper uses the Debye series to reveal much interesting 
information about resonances. For example, Fig. 8 shows that 
the Debye series contributions vary rapidly in phase in the 
vicinity of resonances, tending to congregate around 0°. The 
effects of this behavior can also be seen in Mie results: the 
near-circular loops shown in Fig. 2 can be explained by the 
Debye series results in Fig. 13.  

More importantly, this paper demonstrates that the Debye 
series expansion in Eq. (4) provides a direct and succinct 
explanation for these resonances: in particular, resonances for 
a specified value of n occur when the term R121

n is positive 
and real. This criterion ensures that contributions from partial 
wave n to the scattered field from Debye series terms from p 
= 1 through p = ∞ are precisely in phase, thus causing the 
resonance. 

The value of |R121
n| at the resonance also determines the 

number of terms pmax in the Debye series that are required to 
approximate the Mie solution: the examples in this paper 
show that some broad resonances require only a few hundred 
terms, whilst very narrow resonances can require billions of 
terms. Similarly, the widths δx of the resonances and their 
corresponding Q factors can easily be calculated from |R121

n|. 
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