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Abstract: 

Airy theory has long proved to be a remarkably simple analytical model that describes the 

various features of the atmospheric rainbow.  But the stringent assumptions upon which its 

derivation is based, prevent it from being quantitatively accurate in practical situations.  We 

derive an analytical generalization of Airy theory for both the transverse electric and magnetic 

polarizations and for an arbitrary number of internal reflections.  This generalized analytical 

model contains both the Airy integral and its first derivative, multiplied by constants of 

proportionality that are independent of the scattering angle.  We find that, for the primary 

rainbow, it provides a quantitatively accurate approximation to the exact Lorenz-Mie-Debye 

theory of the rainbow for a much wider range of sizes of spherical water drops than does the 

original version of Airy theory, but still has stringent limitations for the second-order rainbow 

and beyond. 
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1.  Introduction 

The rainbow is a both a beautiful and rich physical phenomenon whose theory has been updated 

and improved many times from the time of Theodoric of Freiberg seven centuries ago, until the 

present day [1, 2].  Some features of the rainbow which are understood in terms of ray optics, 

such as its angular position in the sky and its color separation, involved the contributions of a 

number of researchers, most notably Descartes and Newton [1, 3].  Other features of the rainbow 

which are understood in terms of wave optics, such as the large-but-finite intensity of the 

rainbow itself and the supernumerary interference pattern adjacent to it, involved the 

contributions of a number of later researchers, most notably Young and Airy  

[1, 3].  In particular, Airy derived an analytical formula for the intensity of the rainbow and its 

accompanying supernumerary interference pattern using a mixture of ray theory and wave theory 

for the idealized case of scattering of a monochromatic plane wave of light of wavelength λ by a 

single spherical water droplet of radius a and real refractive index N [4].  After nearly two 

centuries, Airy’s formula remains brilliant in its simplicity in that it provides a large amount of 

significant information about the rainbow, starting from only a small number of physical inputs, 

namely the curvature of the cubic wavefront exiting the sphere in the vicinity of the Descartes 
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rainbow ray and the product of the Fresnel reflection and transmission coefficients of the 

Descartes ray ([5, 6] and see section 13.23 of [7]). 

The present state of the art of the theory of the rainbow for scattering of a monochromatic 

plane wave by a single spherical water droplet has evolved from ray theory and Airy theory 

along several different paths.  Following the path of development that takes a purely numerical 

point of view, one can compute the scattered intensity of the exact Lorenz-Mie-Debye theory [7, 

8].  Since the geometric optics intensity scales as x
2
 (where x is the size parameter defined by x = 

2πa/λ) while the intensity of the rainbow for p-1 internal reflections scales as x
7/3

 according to 

Airy theory, one can numerically watch the rainbow slowly rise above the geometric optics 

background as x is increased in the numerical computations.  In order to make numerical 

computations more closely reflect observations of rainbows in the natural environment, one can 

average the scattered intensity over a realistic size distribution of water droplets in a rain shower, 

over the finite angular width of the sun, and over the wavelengths in the visible part of the solar 

spectrum. 

Following the path of rainbow theory development that takes an analytical point of view, one 

applies the Complex Angular Momentum (CAM) method to the partial wave sum for each value 

of p [9 - 14].  This is followed by the Chester-Friedman-Ursell (CFU) uniform approximation in 

the vicinity of the p-1 order rainbow [11, 15 - 18].  One obtains an analytical formula that 

expresses the scattered electric field in the rainbow region in terms of both the Airy integral and 

its first derivative, each of which is multiplied by an infinite series of polarization-dependent and 

scattering angle-dependent coefficients.  The original version of Airy theory is a transitional 

approximation that is accurate near the Descartes rainbow deflection angle, but becomes 

increasingly inaccurate as the deflection angle moves farther into the supernumerary region.  The 

CFU version of rainbow theory, on the other hand, remains uniformly accurate from Alexander’s 

dark band, through the main rainbow peak, to deep within the supernumerary interference region. 

In spite of these more sophisticated developments in the theory of the rainbow, there 

continues to be an interest in obtaining an analytic formula for the intensity of the rainbow and 

its accompanying supernumerary interference pattern that closely approximates the exact results 

of Lorenz-Mie-Debye theory [19].  The original version of Airy’s theory expresses the scattered 

electric field in the vicinity of the first-order rainbow in terms of what is today called the Airy 

integral (see Sec. 10.4 of [20]), whose argument depends on only the cubic wavefront parameter 

h, the sphere size parameter x, and the deviation Δ of the ray deflection angle Θ from the 

Descartes rainbow ray Θ
R
.  The Airy integral is multiplied by a constant of proportionality that is 

independent of Θ and which depends in part on the product of the polarization-dependent flat-

interface Fresnel reflection and transmission coefficients evaluated at the angle θi
R
 of the incident 

Descartes ray.  Airy’s original formula for the first-order rainbow and the transverse electric 

polarization (TE) of the incident electromagnetic plane wave has been generalized to TE-

polarized light for all higher-order rainbows having p ≥ 3 [21, 22].  It has also been generalized 

to incident light with the transverse magnetic (TM) polarization and p = 2 [23].  In this case for N 
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= 1.333, the Brewster angle of incidence of θi
B
 = 53.14° is close to the angle of incidence of the p 

= 2 Descartes rainbow ray, θi
R
 = 59.41°.  The variation in the amplitude of the participating rays 

along the wavefront produces a contribution to the scattered electric field in the vicinity of the 

rainbow that is proportional to the first derivative of the Airy integral with respect to its 

argument.  We give the name generalized Airy theory to the extension of Airy’s original theory, 

that takes into account to first order, this amplitude variation of the participating rays.  The 

scattered electric field of generalized Airy theory is equal to the sum of an Airy integral term, 

plus another term proportional to its first derivative, each multiplied by a polarization-dependent 

but Θ-independent constant.  This inclusion of a first-order amplitude variation produces a much 

wider region of validity than that of the original version of Airy theory, although it continues to 

have stringent limits for p ≥ 3. 

Section 2 of this paper describes our terminology and notation.  In section 3, we derive 

generalized Airy theory, beginning from ray theory.  In section 4, we determine the range of 

validity of generalized Airy theory in x-Δ space for arbitrary p and both polarizations of the 

incident plane wave.  Many decades ago, (see p. 246 of [7]) van de Hulst showed that the 

original version of Airy theory for the TE polarization, p = 2 and N = 1.333 was expected to be 

quantitatively accurate only when x ≳ 5,000 (i.e. a ≳ 520 μm for λ ≈ 0.65 μm).  This limitation 

has been mentioned in almost all subsequent studies of Airy theory [11 - 13].  It is also far above 

the size at which rain drops begin to become oblate spheroidal as they fall through the air, a ≈ 

170 μm [24, 25] (i.e. x ≈ 1,650 for λ = 0.65 μm).  This limitation of the original version of Airy 

theory provides only qualitative information, and not quantitative information, about rainbows 

observed outdoors following a rain shower.  A renewed interest in the range of quantitative 

validity of Airy theory has recently appeared in the literature [26], for which a numerical ray 

tracing point of view was taken.  The present study, which takes an analytical point of view, can 

be considered as complementary to this.   

The analysis of section 4, however, shows that the quantitative applicability of generalized 

Airy theory extends to size parameters smaller than that of the original version of Airy theory by 

more than a factor of ten.  For the TE polarization, p = 2, and N = 1.333, generalized Airy theory 

is quantitatively accurate for x ≳ 360 (i.e a ≳ 37 μm at λ = 0.65 μm) which describes scattering 

by small spherical water drops that participate in rain showers.   

In section 5, we discuss the false Brewster angle artifact present in generalized Airy theory.  

In section 6, we numerically test the accuracy of generalized Airy theory for TE and TM 

polarizations with N=1.333 for p = 2 and p = 3 to determine its validity as a function of droplet 

size.  Section 7 considers some special cases that lie beyond the capabilities of generalized Airy 

theory, and we propose further improvements to it.  Lastly, we present our conclusions in section 

8.   
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2.  Terminology and Notation  

We start by considering geometrical ray theory for a monochromatic incident electromagnetic 

plane wave of electric field strength E0, wavelength λ, wave number k = 2π/λ and time 

dependence exp(-iωt), propagating in the uz direction and linearly polarized in the ux direction.  

The geometrical rays that comprise the plane wave are scattered by a single homogeneous 

spherical particle of radius a and real refractive index N, whose center coincides with the origin 

of a spherical coordinate system (r,θ,φ).  The angle of incidence of an incoming ray at the sphere 

surface is θi, its angle of refraction into the sphere is θt, and its deflection angle upon exiting the 

sphere following p-1 internal reflections is Θ.  The angles θi and θt are related by Snell’s law, 

and they are related to Θ by 

Θ = (p-1) π + 2θi - 2pθt  .           (2.1) 

The scattering angle θ of the ray is related to its deflection angle by 

θ = arccos[cos(Θ)]   .           (2.2) 

The angles of incidence and transmission of the Descartes rainbow ray making p-1 internal 

reflections inside the sphere are 

cos(θi
R
) = [(N

2 
- 1)/(p

2 
- 1)]

1/2
 ≡ c         (2.3a) 

sin(θi
R
) = [(p

2 
- N

2
)/(p

2 
- 1)]

1/2
 ≡ s         (2.3b) 

cos(θt
R
) = (p/N) cos(θi

R
)           (2.3c) 

sin(θt
R
) = (1/N) sin(θi

R
)  ,          (2.3d) 

and its deflection angle is 

Θ
R
 = (p-1) π + 2θi

R
 - 2pθt

R
  .        (2.4) 

The quantity h describing the cubic shape of the outgoing wavefront in the vicinity of the 

rainbow ray is given by 

h ≡ [(p
2
 - 1)/p

2
] (s/c

3
) .           (2.5) 

The deflection angle of an arbitrary ray with respect to the Descartes rainbow ray is 

parameterized by Δ, where 

Θ = Θ
R
 + Δ  .            (2.6) 

The rainbow as a function of Δ is a transition from the two-ray supernumerary region Δ>0 

where the upper (U) and lower (L) supernumerary rays with different angles of incidence θi
U
 and 

θi
L
 are deflected in the same direction Θ  

Θ = (p-1) π + 2θi
L
 - 2pθt

L
 = (p-1) π + 2θi

U
 - 2pθt

U
  ,       (2.7) 
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and the zero-ray region where Δ < 0.  When θi
U
 and θi

L
 are in the vicinity of θi

R
, we let  

θi
U/L

 = θi
R
 + ε

U/L
            (2.8a) 

θt
U/L

 = θt
R
 + δ

U/L
  ,          (2.8b) 

where ε
U
 and δ

U
 are positive, ε

L
 and δ

L
 are negative, and ε

U/L
, δ

U/L
, Δ are all assumed to be small.  

Since the angle pairs θi
U
 and θt

U
 of the U ray, θi

L  
and θt

L
 of the L ray, and θi

R
 and θt

R
 of the 

Descartes rainbow ray each satisfy Snell’s law, the angles δ
U/L

 are functions of ε
U/L

, respectively, 

having the Taylor series expansion 

δ
 U/L

 = J1 ε
 U/L

 - J2 (ε
 U/L

)
2
 - J3 (ε

 U/L
)
3
 + O[(ε

 U/L
)
4
]     (2.9) 

where 

J1 = 1/p          (2.10a) 

J2 = [(p
2 

- 1)/(2p
3
)] [(p

2 
- N

2
)/(N

2 
- 1)]

1/2
      (2.10b) 

J3 = [(p
2 

- 1)/(6p
5
)] [p

2
 + 3(p

2 
- N

2
)/(N

2 
- 1)]  .     (2.10c) 

The common deflection angle Θ of Eq. (2.7) for the U and L supernumerary rays is a function of 

their angle of incidence.  Using the J1, J2, J3 terms of Eqs. (2.9)(2.10a-c), the deflection angle has 

the Taylor series expansion 

Δ = K2 (ε
 U/L

)
2
 + K3 (ε

 U/L
)
3
 + O[(ε

 U/L
)
4
]      (2.11) 

where 

K2 = [(p
2
 - 1)/p

2
][(p

2
 - N

2
)/(N

2
 - 1)]

1/2
      (2.12a) 

K3 = [(p
2
 - 1)/(3p

4
)] [p

2
 + 3(p

2
 - N

2
)/(N

2
 - 1)]  .     (2.12b) 

Equation (2.11) can be inverted to give  

ε
 U/L

 = ± L1 Δ
1/2

 - L2 Δ + O(Δ
3/2

)          (2.13) 

where 

L1 = p (N
2
 - 1)

1/4
/[(p

2
 - 1)

1/2
(p

2
 - N

2
)
1/4

]        (2.14a) 

L2 = [p
2
(N

2
 - 1) + 3(p

2
 - N

2
)]/[6(p

2
 - 1)(p

2
 - N

2
)]  ,    (2.14b) 

and the ± in Eq. (2.13) associates +/- with the U/L supernumerary ray. 

 

3.  Derivation of Generalized Airy Theory  

3.1  Ray Theory 

In ray theory, the scattered electric field of the U and L supernumerary rays is [27]  
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EU
scatt (r,Θ,φ) = G(r,θ) exp(iQ) exp(iπ/2) exp{ix[2pN cos(θt

U
)–2 cos(θi

U
)]} x 

                           × [sin(θi
U
) cos(θi

U
)]

1/2
 {|[p cos(θi

U
)]/[N cos(θt

U
)] - 1|}-1/2  

                           × [- cos(φ) F
TM

(θi
U
) uθ + sin(φ) F

TE
(θi

U
) uφ]     (3.1) 

and 

EL
scatt (r,Θ,φ) = G(r,θ) exp(iQ) exp(iπ) exp{ix[2pN cos(θt

L
)–2 cos(θi

L
)]} x  

                           × [sin(θi
L
) cos(θi

L
)]

1/2
 {[p cos(θi

L
)]/[N cos(θt

L
)] - 1}

-1/2
  

                           × [- cos(φ) F
TM

(θi
L
) uθ + sin(φ) F

TE
(θi

L
) uφ] ,      (3.2) 

where 

G(r,θ) = [E0 exp(ikr-iωt)/(kr)] [2 sin(θ)]
-1/2 

        (3.3a) 

Q = -pπ/2             (3.3b) 

x = ka  .            (3.3c) 

In Eqs. (3.1),(3.2) the amplitude of the partial wave reflection and transmission coefficients of 

the U and L supernumerary rays at the sphere surface is approximated by the real flat-interface 

electric field Fresnel coefficients for transmission (t21 and t12) and reflection (r121 and r212), where 

region 2 is exterior to the sphere and region 1 is the sphere interior.  The formulas for the TE and 

TM versions of these Fresnel coefficients are given, for example in Secs. 1.5.2, 1.5.3 of [28].  

We denote the product of the Fresnel coefficients for transmission through the sphere following 

p-1 internal reflections for the U and L rays and for either the TE or TM polarization by  

F
TE

(θi
U/L

) ≡ [t21
U/L 

(r121
p-1

)
U/L 

t12
U/L

]
(TE)

         (3.4a)  

F
TM

(θi
U/L

) ≡ [t21
U/L 

(r121
p-1

)
U/L 

t12
U/L

]
(TM)  

.         (3.4b)  

Equations (3.1),(3.2) stress the individual contributions that the U and L supernumerary rays 

make to the total scattered electric field in the (Θ,φ) direction, 

Escatt(r,Θ,φ) = EU
scatt (r,Θ,φ) + EL

scatt (r,Θ,φ)  .        (3.5) 

They simplify in φ = 0° azimuthal plane where the scattered light is entirely TM polarized, and 

in the φ = 90° azimuthal plane where it is entirely TE polarized.  These two special cases will be 

considered in this study.   

The two scattered supernumerary fields superpose and interfere at each deflection angle Θ.  

Sometimes the interference is constructive, sometimes it is destructive, and sometimes it lies 

between these two limits.  We wish to rewrite Eqs. (3.1), (3.2), (3.5) in a form that stresses the 

character of the interference of the U and L rays for a given Θ, so that it exhibits a collective-

effect point of view rather than an individual-contribution point of view.  In order to simplify the 
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notation of Eqs. (3.1), (3.2) somewhat, we let Φ(Θ,U) and Φ(Θ,L) be phase of the U and L 

supernumerary rays,  

Φ(Θ,U) ≡ 2pN cos(θt
U
)–2 cos(θi

U
)         (3.6a) 

Φ(Θ,L) ≡ 2pN cos(θt
L
)–2 cos(θi

L
) .         (3.6b) 

We let the amplitude of the U and L supernumerary rays in the φ = 90° and φ = 0° azimuthal 

planes be A
TE/TM

(Θ,U) and A
TE/TM

(Θ,L), where   

A
TE/TM

(Θ,U) ≡ [sin(θi
U
) cos(θi

U
)]

1/2
 {|[p cos(θi

U
)]/[N cos(θt

U
)] - 1|}-1/2 

F
TE/TM

(θi
U
)   (3.7a) 

A
TE/TM

(Θ,L) ≡ [sin(θi
L
) cos(θi

L
)]

1/2
 {[p cos(θi

L
)]/[N cos(θt

L
)] - 1}

-1/2
 F

TE/TM
(θi

L
)     (3.7b) 

In addition, we let  

Acon(Θ) ≡ A
TE/TM

(Θ,U) + A
TE/TM

(Θ,L)         (3.8a) 

Ades(Θ) ≡ A
TE/TM

(Θ,U) - A
TE/TM

(Θ,L)  .        (3.8b) 

The explicit Θ dependence of the notation A
TE/TM

(Θ,U), A
TE/TM

(Θ,L), Φ(Θ,U), and Φ(Θ,L) is 

meant to remind the reader that these quantities are functions of the deflection angle Θ, the 

angles of incidence θi
U
 and θi

L
, and the transmission angles θt

U
 and θt

L
 of the supernumerary rays 

corresponding to the deflection angle Θ.   

3.2  Generalized Airy Theory Phase   

In order to express Eq. (3.5) solely in terms of the deflection angle Θ, or equivalently Δ, and 

eliminate the dependence on the angles of incidence θi
U
 and θi

L
, we need to invert Eq. (2.7) so as 

to obtain θi
U
(Θ) and θi

L
(Θ).  This was approximately accomplished for the phases Φ(Θ,U) and 

Φ(Θ,L) using a Taylor series expansion evaluated with respect to the rainbow angle R, where the 

first five nonzero terms were kept, 

Φ(Θ, U/L) = Φ(R) + A Δ ± B Δ
3/2 

+ C Δ
2
 ± E Δ

5/2
 + O(Δ

3
)  .      (3.9) 

Our numerical experimentation shows that the oscillations of the scattered intensity in Airy 

theory using the A and B terms alone start to drift out of phase with respect to the intensity 

oscillations predicted by the exact Lorenz-Mie-Debye theory as Δ progresses deeper into the 

supernumerary region.  In order to bring the phase of the Airy theory oscillations in line with the 

Lorenz-Mie-Debye oscillations, we need to effectively stretch it by including the contribution 

provided by the additional C and E terms. 

An efficient way to calculate the coefficients A, B, C, E is as follows.  Consider the quantity  

D ≡ dθt/dθi = cos(θi)/[N cos(θt)]          (3.10)  

and its derivatives with respect to θi, 

Dj ≡ d
j
D/dθi 

j
 .           (3.11) 
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These derivatives evaluated at R will be symbolically denoted as Dj(R).  One treats these entities 

symbolically throughout the calculation, and explicitly evaluates them only as the final step.  

This strategy allows one to exploit various important time-saving cancellations that occur 

between the Dj(R), which would likely not have been noticed in other methods.  The first step in 

our approach is to write the Taylor series expansion of Θ with respect to θi, and evaluated at R, in 

terms of the Dj(R).  The result is then inverted to express ε in terms of both powers of Δ
1/2

 and 

the Dj(R).  We keep terms up to and including O(Δ
2
) in the expansion.  Next, we Taylor series 

expand Φ with respect to θi and evaluate it at R.  The various derivatives of Φ evaluated at R are 

also expressed in terms of the Dj(R).  Now that everything needed for the calculation has been 

expressed in terms of the Dj(R), the expansion of ε in terms of powers of Δ
1/2 

is substituted into 

the Taylor series expansion of Φ with respect to θi.  After the appropriate cancellations between 

the resulting Dj(R) terms have been made, the coefficient B in Eq. (3.9) ends up only depending 

on D1(R), the coefficient C only depends on D1(R), D2(R), and the coefficient E only depends on 

D1(R), D2(R), D3(R).  Lastly, the Dj(R) are explicitly evaluated, and are substituted in.  As a 

result, the coefficients of Eq. (3.9) were found to be 

Φ(R) = 2pN cos(θt
R
) - 2 cos(θi

R
)       (3.12a) 

A = sin(θi
R
)          (3.12b)  

B = (2/3) pc
5/2 

/[(N
2
-1)s]

1/2
 =  (2/3) h

-1/2
      (3.12c) 

C = {[c
3
/[12(N

2
-1)s

2
]} [c

2
(2p

2
+3) - 3(p

2
+1)]      (3.12d) 

E = p {c/[(N
2
-1)s]}

3/2
  {[c

2
/15] [3 + c

2
(p

2
-3)]  

+ [c
2
/(20s

2
)] [c

4
 (14p

2
/9 + 2/3) - c

2 
(p

2
 + 5/3) + 1]}  .   (3.12e) 

Thus we can define 

Φ(Θ, U/L) ≡ Φsymm(Δ) ± Φanti(Δ)       (3.13) 

where   

Φsymm(Δ) ≡ Φ(R) + A Δ + C Δ
2
 +O(Δ

3
)      (3.14a) 

Φanti(Δ) ≡ B Δ
3/2 

+ E Δ
5/2 

+ O(Δ
7/2

) ≈ (2/3)(Δ
3/2

/h
1/2

)(1 + EΔ/B) .     (3.14b) 

We define the Airy theory phase parameter ζ(Δ) by  

(2/3)ζ(Δ)
3/2

 ≡ xΦanti(Δ) ,           (3.15) 

which can be written in terms of the quantity χ(Δ) as   

ζ(Δ) = x
2/3 
χ(Δ) ,           (3.16) 

with 

χ(Δ) ≈ (Δ/h
1/3

) [(1 + K1Δ +O(Δ
2
)]       (3.17) 
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and  

K1 = (2/3)(E/B)  .           (3.18) 

This approximation for ζ(Δ) ignores the higher order terms, beginning with O(Δ
2
) in Eq. 

(3.17) which would arise from the O(Δ
7/2

) term of Eq. (3.14b).  For p = 2, N = 1.333, and Δ 

measured in radians, K1 in Eq.(3.18) has the numerical value K1 = 0.1650.  This differs from the 

numerical value of K1 = 0.2011, of Eqs. (4.14), (4.19), (A27) in [12], which was also quoted in 

[13].  The result of [12,13] was presumably obtained using the more involved calculational 

procedure based solely on Eqs. (2.9) - (2.14).  We found that our value of K1 produces a better fit 

to the intensity oscillations than does the value quoted in [12, 13].  We determined this by 

computing both the generalized Airy intensity and the Lorenz-Mie-Debye intensity for p = 2, N = 

1.333, and x = 1,000.  We then numerically determined the locations of the first 18 sharp 

intensity minima for each model and best-fit their difference by the form of Eqs. (3.16), (3.17).  

The linear best-fit gave K1 = 0.1547.  We also calculated the scattered intensity in both models 

for p = 2, N = 1.333, x = 10,000.  We then best-fit the locations of the first 41 intensity minima in 

both models, and found nearly identical results for K1.  Our result of K1 = 0.1650 is larger than 

the numerically-obtained best-fit by 6.7%, while the result of [12, 13] is larger than it by about 

30%. 

3.3  Zeroth-Order CFU Uniform Approximation  

      When Eqs. (3.14a),(3.14b) are substituted into Eqs. (3.1),(3.2), the symmetric phase becomes 

a common factor, and the magnitude of the scattered electric field vector in the two 

supernumerary rays region can be written in terms of the new variables as  

|Escatt(r,θ,φ)| = G(r,θ) exp(iQ) exp(3iπ/4) exp[ixΦsymm(Δ)] x  

                        × {[Acon(Θ)] cos[xΦanti(Δ) - π/4] + i [Ades(Θ)] sin[xΦanti(Δ) - π/4]}. (3.19) 

Here, the notation |Escatt(r,θ,φ)| indicates that the magnitude of the scattered electric field vector 

in these directions still contains both a real part and an imaginary part in the complex plane.  

With the change of variables of Eq. (3.15), the magnitude of the two-supernumerary-ray 

scattered electric field vector finally becomes 

|Escatt(r,θ,φ)| = G(r,θ) exp(iQ) exp(3iπ/4) exp[ixΦsymm(Δ)] x  

                      × { Acon(Θ) cos[(2/3)ζ(Δ)
3/2

 - π/4]+ i Ades(Θ) sin[(2/3)ζ(Δ)
3/2

 - π/4]}. (3.20) 

We recall that Eq. (3.20) is identical to Eqs. (3.1),(3.2),(3.5).  But it has now been converted 

from the sum of the two individual contributions, considered separately, into the form that easily 

locates the deflection angles Θ for which constructive interference (con) and destructive 

interference (des) occur.  

However, in the vicinity of the Descartes rainbow angle where Δ → 0, we see that Acon(Θ) 

diverges as Δ
-1/4

.  Thus, in order incorporate the behavior of the sum of the two supernumerary 
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rays for Δ → 0 and for Δ >> 0 into a single expression, we now transfer Eq. (3.20) from the ray 

representation to the Airy representation.  The asymptotic form of the Airy function and its first 

derivative are 

cos[(2/3)ζ(Δ)
3/2 - 
π/4] ↔ [π

1/2 
ζ(Δ)

1/4
] Ai[-ζ(Δ)]        (3.21a) 

sin[(2/3) ζ(Δ)
3/2 

 - π/4] ↔ [π
1/2 
ζ(Δ)

-1/4
] Ai′[-ζ(Δ)] .      (3.21b)     

The crossover from the ray representation to the Airy representation occurs in the interval 1.1 ≲ 

ζ(Δ) ≲ 1.4.  With this change of representation and substituting Eq. (3.17) with the neglect of the 

K1Δ term for the ζ(Δ)
1/4

 factors, the magnitude of the two-supernumerary-ray scattered electric 

field vector becomes  

|Escatt(r,θ,φ)| = G(r,θ) exp(iQ) exp(3iπ/4) exp[ixΦsymm(Δ)] π
1/2 

x
7/6 
χ(Δ)

1/4
  

                           × {Acon(Θ) Ai[-ζ(Δ)] + i Ades(Θ) Ai′[-ζ(Δ)] / [x
1/3 
χ(Δ)

1/2
]}.   (3.22) 

The two ray contributions constructively interfere when Ai′
2
[-ζ(Δ)] = 0 and Ai

2
[-ζ(Δ)] is a 

relative maximum, and the two contributions destructively interfere when Ai
2
[-ζ(Δ)] = 0 and 

Ai′
2
[-ζ(Δ)] is a relative maximum.  Equation (3.22) is identical to the zeroth-order CFU uniform 

approximation of [15-18], for which Khare and Nussenzveig [12,13] used the notation 

p0(Δ) = Acon(Θ)         (3.23a) 

q0(Δ) = [2/
 
χ(Δ)]

1/2
 Ades(Θ) ,       (3.23b) 

with p0 and q0 considered as real quantities in Eqs. (3.23a),(3.23b).   

 

3.4  Generalized Airy Theory Amplitude 

In the small-Δ limit, we now evaluate A
TE/TM

(Θ,U) and A
TE/TM

(Θ,L) of Eqs. (3.7a), (3.7b) up to 

the O(Δ
1/2

) correction to the dominant term for both the TE and TM polarization.  There are four 

contributions, three being polarization-independent and one being polarization-dependent.  The 

three polarization-independent contributions are  

[sin(θi
U/L

) cos(θi
U/L

)]
1/2

 = (sc)
1/2

 {1 ± (L1/2)[(c/s)-(s/c)] Δ
1/2

 + O(Δ)}  ,   (3.24) 

{|p cos(θi
U/L

)/[N cos(θt
U/L

) - 1|}-1/2
 = |εU/L|-1/2

 (c/s)
1/2

 [p/(p
2
-1)

1/2
]  

                                    × {1 ∓ (L1/4)[(c/s) + (3/p
2
)(s/c)] Δ

1/2
 + O(Δ)} ,   (3.25) 

and 

|εU/L|-1/2
 = L1

-1/2
Δ

-1/4 
[1 ± (L2/2L1) Δ

1/2
 + O(Δ)]  .        (3.26)  
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For the polarization-dependent contribution, the first two terms of the Taylor series 

expansion of the product of the TE and TM Fresnel coefficients about the Descartes rainbow ray 

are 

F
TE

(θi
U/L

) ≈ F
TE

(θi
R
) + ε

U/L
 F

TE
′(θi

R
)         (3.27a) 

F
TM

(θi
U/L

) ≈ F
TM

(θi
R
) + ε

U/L
 F

TM
′(θi

R
)          (3.27b) 

where 

F
TE

(θi
R
) = 4p(p - 1)

p-1
/(p + 1)

p+1
       (3.28a) 

F
TM

(θi
R
) = 4pN

2
(p - N

2
)
p-1

/(p + N
2
)
p+1

      (3.28b) 

F
TE
′(θi

R
) ≡ (dF

 TE
/dθi)R = F

TE
(θi

R
) h cos

2
(θi

R
)      (3.28c)  

F
TM
′(θi

R
) ≡ (dF

 TM
/dθi)R = F

TM
(θi

R
) h cos

2
(θi

R
) (2p

2
N

2 
- p

2 
- N

4
)/(p

2 
- N

4
)    (3.28d) 

 

 

 

Fig.1.  Product of the TE and TM flat interface Fresnel coefficients as a function of the ray angle of incidence, FTE(θi) and FTM(θi), for 

transmission through a sphere following one internal reflection for N = 1.333.  The tangent to the curves at the angle of incidence of the Descartes 

rainbow ray, θi
R = 59.41°, is also shown. 
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Fig.2.  Product of the TE and TM flat interface Fresnel coefficients as a function of the ray angle of incidence, FTE(θi) and FTM(θi), for 

transmission through a sphere following two internal reflections for N = 1.333.  The tangent to the curves at the angle of incidence of the 

Descartes rainbow ray, θi
R = 71.84°, is also shown. 

One might have thought that modeling the amplitude variation of the outgoing wavefront to 

higher than first-order would easily lead to a further more accurate generalization of Airy theory.  

Figures 1 and 2 suggest that this is not so easily accomplished.  The product of the Fresnel 

coefficients, F
TE

(θi) and F
TM

(θi), has a sharp relative maximum for large θi, and then rapidly 

decreases to zero as θi → 90°.  This is due to the opposing tendencies of the Fresnel reflection 

coefficient to approach unity as θi → 90° and the Fresnel transmission coefficient to approach 

zero in the same limit.  As a result, many terms in the Taylor series expansion of the product of 

Fresnel coefficients with respect to the Descartes rainbow ray would be required in order to 

accurately model this rapid variation occurring far from the Descartes ray.  In addition, it was 

found by numerical experimentation that the Taylor series expansion of F
TE

(θi) and F
TM

(θi) for p 

= 2, 3 diverges for θi<<θi
R
 since the magnitude of the Taylor series coefficients increases, rather 

than decreases, as the term order increases.  For these reasons, we limited ourselves to the first-

order amplitude modeling.  Unfortunately, truncating the product of the Fresnel coefficients by 

Eqs. (3.27a),(3.27b) will introduce an artifact into the calculated scattered electric field which we 

call a false Brewster angle effect, and which will be described in detail in section 5. 
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These four O(Δ
1/2

) contributions to A
TE/TM

(Θ,U) and A
TE/TM

(Θ,L) are then added and 

subtracted to form Acon(Θ) and Ades(Θ), which are then substituted into Eq. (3.22) to give the 

scattered electric field in the supernumerary region as 

|Escatt(r,Θ,φ)| ≈ G(r,θ) exp(iQ) exp(iL) exp(i3π/4) x
7/6

 [(2πs)
1/2

/ h
1/3

] 

                        × F
TE/TM

(θi
R
) {Ai[-ζ(Δ)] + i h

1/6 
M

TE/TM 
Ai′[-ζ(Δ)]/ x

1/3
}   ,     (3.29)  

where 

M
TE

 = [2p
2
 - (9-p

2
) s

2
]/[6p (p

2 
- 1)

1/2
 c

1/2
 s

3/2
]     (3.30a)  

M
TM

 = {[2p
2
 - (9-p

2
) s

2
](p

2 
- N

4
) + 12[p(p

2 
- 1) c s]

2
} 

 / [6p (p
2 

- 1)
1/2

 (p
2
 - N

4
) c

1/2
 s

3/2
]    (3.30b) 

Equations (3.18),(3.29), (3.30a), (3.30b) are our final equations of generalized Airy theory of the 

p-1 order rainbow for either the TE or TM polarization.  The coefficients of the Airy function 

and its first derivative are constants, independent of Δ.  The original version of Airy theory is 

described by the same equations, but only with the terms proportional to Ai(-ζ) present.  The fact 

that the terms multiplying both Ai(-ζ) and Ai′(-ζ) in generalized Airy theory are constants, rather 

than functions of Δ, as is the case in the CFU uniform approximation, allows this theory to retain 

the simplicity enjoyed by the original version of Airy theory.  Since the amplitude variation 

along the outgoing wavefront in Eqs. (3.24) - (3.27) has been considered here to first order only, 

it can thus be thought of as being intermediate in sophistication between the original version of 

Airy theory and the zeroth-order CFU uniform approximation.  

4.  Region of Validity of Generalized Airy Theory  

In this section, we determine when Eqs. (3.18), (3.29), (3.30a), (3.30b) can be expected to be a 

quantitatively accurate approximation to the exact results of Lorenz-Mie-Debye theory.  The 

criteria we apply here all possess some degree of quantitative arbitrariness.  Although the 

specific values we choose for the arbitrary parameters below are reasonable, other researchers 

may prefer different values for them.  Nonetheless, the conclusions drawn in this section provide 

a general qualitative estimate for when generalized Airy theory is expected to be quantitatively 

accurate. 

4.1  van de Hulst’s Criterion 

A size-dependent assumption that will limit the quantitative range of validity of generalized Airy 

theory in x-Δ parameter space was first considered by van de Hulst in Sec. 13.24 of [7], namely 

that the interference of the U and L supernumerary rays be able to resolve the principal rainbow 

peak.  van de Hulst applied this criterion to the original version of Airy theory for the TE 

polarization, p = 2, and N = 1.333.  He found that the original version of Airy theory is a 

quantitatively accurate approximation only for x ≳ 5,000.  van de Hulst’s argument is fully 

reproduced here, since some of the details involved did not explicitly appear in [7].  The original 
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version of Airy theory assumes that the product of the Fresnel coefficients F
TE

(θi) is constant, 

having the value F
TE

(θi
R
), in the angle of incidence interval that participates in rainbow 

formation.  He arbitrarily allowed up to a ±10% variation of F
TE

(θi) from F
TE

(θi
R
).  This 

corresponds to the angle of incidence interval  

sin(θi
L
) = 0.82 ≲ sin(θi) ≲ 0.90 = sin(θi

U
) ,     (4.1) 

or  

θi
L
 = 55° ≲ θi ≲ 64° = θi

U  
.        (4.2) 

This range of incident angles produces a deflection angle interval of 

0° ≤ Δ ≲ Δ
max

 = 0.5°  ,           (4.3) 

with Δ = 0° resulting from θi
R
, and Δ

max
 resulting from θi

L
 and θi

U
.  In the spirit of Rayleigh’s 

criterion for resolvability of two neighboring point sources (see Secs. 7.6.3 and 8.6.2 of [28]), 

this deflection angle interval is assumed to be large enough so that the principal rainbow peak 

can be “just resolved”.  We know that Ai(-1.0188) = 0.53566 describes the principal rainbow 

peak, which we denote in what follows by the subscript (0), and Ai(-1.5) = 0.46426 describes the 

point beyond the principal rainbow peak where the Airy intensity has fallen to 75% of its peak 

value, i.e. 

[Ai(-1.5)/Ai(-1.0188)]
2
 = 0.75  .          (4.4) 

This means that the main rainbow peak occurs at  

Δ0 = (1.0188/1.5)Δ
max

 ≈ 20 minutes of arc  .        (4.5) 

Thus, van de Hulst’s criterion for the validity of the original version of Airy theory is  

x
2/3
Δ

max
/h

1/3
 ≳ 1.5 ,         (4.6) 

which gives x ≳ 5,000.   

4.2  Scattering Angle Criterion 

Another approximation that will limit the region of quantitative validity of generalized Airy 

theory is that the variation of F
TE

(θi) and F
TM

(θi) in the vicinity of θi
R
 be linear, as was assumed 

in Eqs. (3.27a),(3.27b).  The criterion we propose for this is 

|[FTE/TM
(θi) - F

TE/TM
(θi

R
) - ε F

TE/TM
′(θi

R
)]/F

TE/TM
(θi)| ≤ α      (4.7) 

where α << 1.  We arbitrarily choose α = 0.05, which permits up to a ±5% deviation from 

linearity, which is half the maximum deviation considered in Sec. 3.1 by van de Hulst for the 

validity of the original version of Airy theory.  It should be noted that Eq. (4.7) is independent of 

ka, except that the flat-surface Fresnel coefficients, upon which Eq. (4.7) is based, require ka >> 
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1.  For N = 1.333, and converting the angle of incidence interval to a corresponding deflection 

angle interval, the maximum value of Δ permitted by Eq. (4.7), Δ
max

, is given in Table 1. 

Table 1 

Maximum deflection angle Δ
max

 (measured from Θ
R
) corresponding to α = 0.05 in Eq. 4.7 for N = 1.333 and 

different values of p. 

p Δ
max  for TE Δ

max  for TM 

2 2.89° 0.47° 

3 2.40° 0.16° 

4 1.80° 0.14° 

5 1.54° 0.11° 

The region of linearity for the TE polarization is much larger than that for the TM polarization, 

reflecting the larger curvature of the F
TM

(θi) graph in the vicinity of θi
R
.      

4.3  van de Hulst’s Criterion Revisited 

If van de Hulst’s criterion for the resolvability of the main rainbow peak of Eq. (4.6) is applied to 

generalized Airy theory for the TE polarization of the p = 2 rainbow for the refractive index N = 

1.333, we find that x ≳ 360 when Δ
max

 = 2.89° as in Table 1.  This is more than a factor of 10 

below the threshold value of the size parameter for the validity of the original version of Airy 

theory.  As expected from Table 1, the minimum size parameter for the validity of generalized 

Airy theory increases both as p increases and for the TM polarization.  For example, for the TE 

polarization, p = 3, 4, 5, N = 1.333, and the value of Δ
max

 given in Table 1, Eq. (4.6) gives x ≳ 

1,130, 2,900, 5,300, respectively.  Also, for the TM polarization, p = 2, N = 1.333, and the value 

of Δ
max

 from Table 1, Eq. (4.6) gives x ≳ 5,500, which continue to pose stringent limits on the 

applicability of generalized Airy theory for p ≥ 3.  We should also note that the consequences of 

a number of other approximations that were made in the derivation of ray theory from Lorenz-

Mie-Debye theory and then generalized Airy theory from ray theory were also examined.  It was 

found that none of them were more restrictive for the values of x and Δ than were the 

consequences described in sections 4.2 and 4.3. 

In spite of this presumed limitation on the original version of Airy theory, in [21] it had been 

found by numerical experimentation that its comparison to the exact results of Lorenz-Mie-

Debye theory was “still surprisingly good” for the TE polarization, p = 2, N = 1.333, and a size 

parameter as low as x = 1,933 or even x = 483.  The reason for this is now clear.  The scattered 

intensity of generalized Airy theory (GA) for the TM and TE polarizations obtained from Eq. 

(3.29) is of the form 

IGA(r,θ,φ=0°) ≈ C
TM

 {[Ai
2
[-ζ(Δ)] + h

1/3 
(M

TM
)
2
 Ai′

2
[(-ζ(Δ)] / x

2/3
}  ,    (4.8a) 

IGA(r,θ,φ=90°) ≈ C
TE

 {[Ai
2
[-ζ(Δ)] + h

1/3 
(M

TE
)
2
 Ai′

2
[(-ζ(Δ)] / x

2/3
}  ,    (4.8b) 
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where C
TM

 and C
TE

 are constants.  Since Ai′
2
(-ζ) = 0 at a relative maximum of Ai

2
(-ζ), the 

scattered intensity in the vicinity of the supernumerary relative maxima is dominated by the Ai
2
(-

ζ) term.  Similarly, since Ai
2
(-ζ) = 0 at a relative maximum of Ai′

2
(-ζ), the scattered intensity in 

the vicinity of the supernumerary relative minima is dominated by the Ai′
2
(-ζ) term.  This means 

that when h
1/3 

(M
TE

)
2
/x

2/3
 << 1, the main effect of the Ai′

2
(-ζ) term on the TE polarized intensity 

in Eq. (4.8b) is to fill in the zeros of the Ai
2
(-ζ) term to the appropriate level, and its influence in 

the vicinity of the supernumerary maxima is negligible.  This is the case for p = 2, 3, N = 1.333, 

and x = 483 since h
1/3 

(M
TE

)
2
/x

2/3
 = 0.0037 and 0.0231, respectively.  Thus, it should be no 

surprise that in spite of the x = 5,000 limitation of van de Hulst’s calculation of the quantitative 

applicability of the original version of Airy theory, it will still provide a good fit to the locations 

and heights of the supernumerary maxima for much smaller values of x.   

However, when the radius of a spherical falling water drop is greater than about a ≈ 0.17 mm, it 

distorts into an oblate spheroid as it falls through the air due to air resistance forces [24, 25].  The 

aspect ratio of the spheroid gradually increases as a function of a.  This produces a small shift in 

the Descartes rainbow ray scattering angle, known as the Möbius shift, which was calculated for 

the first-order rainbow over a century ago [29, 30], and was more recently extended to higher-

order rainbows in [31, 32].  Furthermore, the angular periodicity of the supernumerary 

interference pattern has also been found to change as the water drop becomes oblate spheroidal 

[33, 34].  So, in addition to a minimum size parameter for the quantitative validity of generalized 

Airy theory, there will also be a nominal maximum size parameter since generalized Airy theory 

assumes that the falling water droplet remains spherical.  For visible light with λ = 0.65 μm, a 

rough estimate of the largest size parameter of a falling spherical raindrop is a ≈ 170 μm, or x ≈ 

1,643.  According to Eq. (4.6), the minimum size parameter for the validity of generalized Airy 

theory for the TE polarization, p = 3, N = 1.333, and the value of Δ
max

 given in Table 1 is x ≳ 

1,130.  For the TM polarization, p = 2, N = 1.333, and the value of Δ
max

 from Table 1, Eq. (4.6) 

gives x ≳ 5,500.  Thus, generalized Airy theory can be expected to be a quantitatively accurate 

approximation to the results of the exact Lorenz-Mie-Debye theory for TE-polarized first and 

second order rainbows of falling water drops for the nominal size parameter range 360 ≲ x ≲ 

1,643 and 1,130 ≲ x ≲ 1,643, respectively when λ = 0.65μm.  On the other hand, since the 

minimum size parameter for the quantitative accuracy of the TM-polarized p = 2 generalized 

Airy theory is x = 5,500, it is not guaranteed on the basis of Eq. (4.6) alone that generalized Airy 

theory will be able to provide a quantitatively accurate approximation for falling spherical 

raindrops. 

Contrary to the situation for generalized Airy theory for the TE polarization, it has been 

pointed out [12, 13, 23] that since the TM rainbow for p = 2 and N = 1.333 occurs near the 

Brewster angle, the Ai′
2
(-ζ) term in Eqs. (4.8a),(4.8b) will be dominant, and the Ai

2
(-ζ) term will 

provide a correction to it.  This is easily seen in Eq. (3.29) since for p = 2 and N = 1.333, one has 

h
1/3

 (M
TE

)
2
 = 0.23 for the TE polarization, while h

1/3
 (M

TM
)
2
 = 127.66 for the TM polarization, 

which about 550 times larger.  This difference is in part due to the much larger contribution of 
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F
TM
′(θi

R
).  Thus the effects of the Ai′(-ζ) term of Eq. (4.8a) for the TM polarization will often be 

more important than that for the TE polarization.  The physical consequences of the Ai′(-ζ) term 

are numerically studied in detail in sections 5-7 below. 

5.  False Brewster Angle Artifact 

The Brewster angle, Θ
B
, in the TM polarization occurs when the internal reflection amplitude 

vanishes, only the upper supernumerary ray contributes to scattering at Θ
B
, and there is no 

interference pattern.  When p is odd, there are an even number of internal reflection coefficients, 

and the intensity oscillations of the supernumerary interference pattern exhibit a 180° phase shift 

in the vicinity of Θ
B
.  On the other hand, when p is even, there are an odd number of internal 

reflection coefficients and the supernumerary interference pattern exhibits a 0° phase shift in the 

vicinity of Θ
B
.  One of the ingredients of generalized Airy theory is that the product of the TE or 

TM Fresnel coefficients varies linearly in the vicinity of the Descartes rainbow ray, 

F
TE

(θi) ≈ F
TE

(θi
R
) + F

TE′
(θi

R
) (θi - θi

R
)         (5.1a)  

F
TM

(θi) ≈ F
TM

(θi
R
) + F

TM′
(θi

R
) (θi - θi

R
)         (5.1b) 

If this linear relationship is assumed to extend to all θi, the product of the Fresnel coefficients 

in Eqs. (5.1a), (5.1b) introduces a potential artifact of a false Brewster angle (FB) into both the 

TE and TM polarizations for generalized Airy at the deflection angle corresponding to 

θi
FB,TE

 = θi
R
 - F

TE
(θi

R
)/F

TE′
(θi

R
)          (5.2a)   

θi
FB,TM

 = θi
R
 - F

TM
(θi

R
)/F

TM′
(θi

R
)          (5.2b)   . 

The false Brewster angle turns out to pose no special problem for the TE polarization, where 

Brewster effects should not occur at all, for two reasons.  First, it is predicted to occur deep in the 

supernumerary region, far from the rainbow.  For example, for p = 2 and N = 1.333, Θ
R
 = 

137.92° and Θ
FB,TE

 = 165.93°, and for p = 3, Θ
R
 = 230.92° and Θ

FB,TE
 = 248.47°.  Second, even 

when the generalized Airy intensity for the TE polarization is computed in the vicinity of Θ
FB,TE

, 

no trace of the false Brewster artifact is seen due to the fact that, in Eqs. (3.24)-(3.28), there are 

four additive contributions to M
TE

 and M
TM

.  One of them is due to the polarization-dependent 

product of the Fresnel coefficients, and the other three are independent of polarization.  The 

largest two of these three are opposite in sign to the Fresnel coefficient contribution, and dilute 

its importance.  This is especially true for the TE polarization where for p = 2 and N = 1.333, 

M
TE

 would be 1.13 if only the Fresnel coefficient contribution alone was considered.  But M
TE

 is 

reduced by 67.4% to 0.37 when the other three contributions are added.  For p = 3 and N = 1.333, 

M
TE

 is similarly reduced by 58.5% from 1.65 to 0.68.   

The false Brewster angle artifact for the TM polarization is much more problematical for the 

converse of the two reasons mentioned above for the TE polarization.  First, we note that for p = 

2 and N = 1.333, Θ
R
 = 137.92°, Θ

FB
 = 138.53°, and Θ

B
 = 138.74°.  For this specific case, the 

false and true Brewster deflection angles nearly coincide, and so for this reason the false 
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Brewster artifact should not cause problems.  But for p ≥ 3 and N = 1.333 the false Brewster 

angle remains close to the Descartes rainbow angle, while the true Brewster angle is far from it, 

causing the false Brewster artifact to severely limit the range of Δ for which generalized Airy 

theory is accurate.  For example, for p = 3 and N = 1.333, Θ
R
 = 230.89°, Θ

FB
 = 232.64°, and Θ

B
 = 

244.99°.  For p = 4 and N = 1.333, Θ
R
 = 318.26°, Θ

FB
 = 319.87°, and Θ

B
 = 351.23°.  Second, the 

Fresnel coefficient contribution to M
TM

 is significantly larger than it was for the TE polarization.  

For example, for p = 2 and N = 1.333 the contribution is 9.43, a factor of 8.4 over what it was for 

the TE polarization, and for p = 3 and N = 1.333 it is 5.59, a factor of 3.4 larger than it was for 

TE.  This causes a reduction of the actual value of M
TM

 with all four contributions accounted for 

by only 8% and 17.2%, respectively, and it continues to be dominated by the polarization-

dependent term that contains the false Brewster artifact. 

The computed absence of the false Brewster angle artifact for the TE polarization and its 

presence for the TM polarization in generalized Airy theory can also be understood from another 

point of view.  As is apparent in Fig.10.6 of [20], the maximum value of Ai
2
(-ζ) slowly decreases 

as a function of Δ in the supernumerary region, while the maximum value of Ai′
2
(-ζ) slowly 

increases.  Since the generalized Airy coefficients multiplying these terms are constants, the 

contribution of the first term in Eq. (4.8a),(4.8b) to the intensity oscillations also decreases 

throughout the supernumerary region, while the contribution of the second term increases.  Let 

⟨Ai
2
(-ζ)⟩max be the envelope of the relative maxima of Ai

2
(-ζ), and let ⟨Ai′

2
(-ζ)⟩max be the 

envelope of the relative maxima of Ai′
2
(-ζ).  Then using Eqs. (3.21a),(3.21b),(3.16), these 

quantities are asymptotically related to each other by 

⟨Ai′
2
(-ζ)⟩max / ⟨Ai

2
(-ζ)⟩max = ζ   .         (5.3) 

As long as  

⟨Ai
2
(-ζ)⟩max > (h

1/3 
M

2
/x

2/3
) ⟨Ai′

2
(-ζ)⟩max   ,        (5.4) 

where M is either M
TE

 or M
TM

, the first term of Eqs. (4.8a),(4.8b) dominates the second term, and 

the relative maxima of the intensity oscillations coincide with the relative maxima of Ai
2
(-ζ).  

But if Δ is deep enough in the supernumerary region so that the inequality switches over to  

⟨Ai
2
(-ζ)⟩max < (h

1/3 
M

2
/x

2/3
) ⟨Ai′

2
(-ζ)⟩max   ,       (5.5)  

the second term of Eqs. (4.8a), ( 4.8b) starts to dominate over the first term, and the relative 

maxima of the generalized Airy theory intensity oscillations will now coincide with the relative 

maxima of Ai′
2
(-ζ).  This switchover produces a 180° phase shift in the intensity oscillations 

centered at  

⟨Ai
2
(-ζ)⟩max = (h

1/3 
M

2
/x

2/3
) ⟨Ai′

2
(-ζ)⟩max  ,       (5.6) 

or using Eqs. (3.16), (5.3) 

Δ180 phase shift = 1/M
2
  .          (5.7) 
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This 180° phase shift is associated with the false Brewster angle artifact in generalized Airy 

theory.  For example, for N = 1.333 and p = 2, 3, one has (M
TE

)
2
 = 0.13 and 0.47, respectively.  

Equation (5.7) predicts that any false Brewster angle artifact in the TE polarization would occur 

many radians away from Θ
R
, explaining its absence in the computed results below.  But (M

TM
)
2
 = 

75.17 and 21.43, respectively, leading to Δ180° phase shift =0.76° and 2.67°, respectively, which is in 

the vicinity of the false Brewster angles corresponding to Eq. (5.2b) having ΔFB = 0.61° and 

1.72°, respectively. 

6.  Comparisons between calculation methods 

Before examining the results of generalized Airy calculations, it is helpful to compare some 

results of calculations using the original Airy theory and the rigorous Lorenz-Mie-Debye theory, 

as shown in Figs. 3 and 4.  Although the results are similar around the maxima corresponding to 

the rainbows and their first few supernumerary arcs, the Airy minima have zero intensity.  

Another problem is that the Airy maxima and minima progressively drift away from their true 

locations in terms of θ (as discussed in section 3.2): for example, the Airy minimum intensity at 

θ ≈ 148.1° in Fig. 3 coincides with a Lorenz-Mie-Debye maximum intensity.  Note that Figs. 3 

and 4 are limited to TE polarization because Airy did not consider TM polarization [4].   

Previous sections of this paper have attempted to address all of the above issues by using 

relatively simple extensions of Airy theory.  The rest of this section examines the numerical 

validity of these extensions for p = 2 and p = 3 rainbows. 

 

 
Fig. 3  Scattered intensity as a function of scattering angle for Lorenz-Mie-Debye theory and original Airy theory for TE polarization,  

p = 2, N = 1.333, λ = 0.65 μm, a = 170 μm, and x = 1,643. 
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Fig. 4  As Fig. 3 except that p = 3. 

 
Fig.5  Scattered intensity as a function of scattering angle for Lorenz-Mie-Debye theory and generalized Airy theory of Eq. (3.29) for (a) TE and 

(b) TM polarizations, p = 2, N = 1.333, λ = 0.65 μm, a = 37.24 μm, and x = 360. This is the smallest size parameter for which Eq. (4.6) predicts 

that generalized Airy theory is a valid approximation to Lorenz-Mie-Debye theory for the TE polarization. 
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Fig. 6  As Fig. 5, except that a = 170 μm and x = 1,643. Spherical water drops having larger sizes than this evolve  

into oblate spheroids while falling. 

 
Fig.7  As Fig. 5, except that a = 1,034.5 μm and x = 10,000. The actual shapes of falling water drops of this size are highly distorted. 
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Figures 5-7 for p = 2, N = 1.333, λ = 0.65 μm, and a = 37.24 μm, 170 μm, and 1,035 μm, 

corresponding to x = 360, 1,643, and 10,000, respectively, show the scattered TE and TM 

intensity as a function of scattering angle for the exact Lorenz-Mie-Debye theory and 

generalized Airy theory of Eq. (3.29).  As is easily seen, as x increases both the TE-polarized and 

TM-polarized generalized Airy theory intensity become an increasingly better approximation to 

the exact Lorenz-Mie-Debye theory intensity.  In each figure, the results of Table 1 suggest that 

generalized Airy theory should be a valid approximation to exact Lorenz-Mie-Debye theory for 

the TE polarization in what we will call the angular interval of interest of the scattering angle, 

here θ ≤ 140.81° (i.e., θ
R
 = 137.92° and Δ

max
 = 2.89° in Table 1.  The size parameter considered 

in Fig. 5, x = 360, is the smallest for which Eq. (4.6) predicts that generalized Airy theory is a 

valid approximation to Lorenz-Mie-Debye theory for the TE polarization.  The angular interval 

of interest encompasses the TE principal rainbow peak in Fig. 5.  Although generalized Airy 

theory is not expected on the basis of Eq. (4.6) to closely approximate the TM-polarized Lorenz-

Mie-Debye intensity until x ≈ 5,500, the comparison is surprisingly good when x is as low as 

360. 

The size parameter considered in Fig. 6, x = 1,643, describes the nominal largest radius 

water drop that remains spherical as it falls for λ = 0.65 μm.  The scattered intensity for the TE-

polarized principal rainbow peak and the first supernumerary maximum now fall within the 

angular interval of interest, and again the comparison with the exact theory is quite good.  The 

comparison for the TM-polarized intensity also remains quite good for this size parameter.  For 

the size parameter considered in Fig. 7, x = 10,000, the first ten maxima of the TE-polarized 

supernumerary interference pattern now fall within the angular interval of interest.  For the 

reasons described above, no false Brewster angle effect is observed in Fig. 7 at θ = 165.93°. 

For the TM polarization, both the true Brewster angle at θ
B
 = 138.74° and the nearby false 

Brewster angle at θ
FB

 = 138.53° lie slightly beyond the range of the TM angular interval of 

interest, which is now θ ≤ 138.39°.  When x = 1,643 in Fig. 6, the Brewster angle artifact occurs 

in the vicinity of the reduced-height TM principal rainbow peak, and when x = 10,000 in Fig. 7, 

it has moved slightly past the first TM supernumerary maximum due to the angular narrowing of 

the rainbow and its supernumerary interference pattern as x increases.  The angular position at 

which the generalized Airy theory intensity oscillations shift by 180° matches quite well with the 

angular location at which the 180° shift occurs in the exact Lorenz-Mie-Debye theory. 
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Fig. 8  Scattered intensity as a function of scattering angle for Lorenz-Mie-Debye theory and generalized Airy theory of Eq. (3.29) for (a) TE and 

(b) TM polarizations for p = 3, N = 1.333, λ = 0.65 μm, a = 117 μm, and x = 1,130.  This is the smallest size parameter for which Eq. (4.6) 

predicts that generalized Airy theory is a valid approximation to Lorenz-Mie-Debye theory for the TE polarization. 

 
Fig. 9  As Fig. 8, except that a = 170 μm and x = 1,643.  Spherical water drops having larger sizes than this evolve into oblate spheroids while 

falling. 
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Fig. 10  As Fig. 8 except that a = 1,034.5 μm and x = 10,000.  The shape of actual falling water drops of this size are highly distorted. 

 

Figures 8-10 for p = 3, N = 1.333, λ = 0.65 μm, and a = 117 μm, 170 μm, and 1,035 μm, 

corresponding to x = 1,130, 1,643, and 10,000, respectively, show the scattered TE and TM 

intensity as a function of scattering angle, θ, for the exact Lorenz-Mie-Debye theory and 

generalized Airy theory of Eq. (3.29).  The minima of the TE intensity of the exact theory are 

caused by the U and L rays being 180° out of phase with each other, with the deepest minima 

occurring at θ ≈ 120° where the two rays have similar amplitudes.  In each figure the results of 

Table 1 suggest that generalized Airy theory should be a valid approximation to Lorenz-Mie-

Debye theory for the TE polarization in the angular interval of interest, which is now at the 

scattering angle θ ≥ 126.68° (i.e., θ
R
 = 129.08°and Δ

max
 = 2.40° in Table 1).  The size parameter 

considered in Fig. 8, x = 1,130, is the smallest for which Eq. (4.6) predicts that generalized Airy 

theory is a valid approximation to Lorenz-Mie-Debye theory in the vicinity of the top of the 

principal TE rainbow peak. 

The size parameter considered in Fig. 9, x = 1,643, again describes the nominal largest size 

water drop that remains spherical as it falls when λ = 0.65μm.  The angular interval of interest 

now extends well past the principal rainbow peak, almost to the first supernumerary minimum.  

For x = 10,000 in Fig. 10, the angular interval of interest now extends past the third 

supernumerary maximum.  Again, the comparison between generalized Airy theory TE intensity, 

and that of Lorenz-Mie-Debye theory is quite good in the angular region of interest, and it 
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improves as x increases.  But outside the angular interval of interest, θ < 126.68°, the intensity of 

the relative minima of the supernumerary interference pattern of generalized Airy theory fails to 

reproduce the variations in the intensity of the supernumerary minima of Lorenz-Mie-Debye 

theory due to the U and L rays having similar amplitudes around θ ≈ 120°.  The false Brewster 

angle artifact for the TE polarization at θ
FB

 = 111.52° does not occur, again for the reasons 

described in section 5. 

The effect of the false Brewster angle artifact for the TM-polarized intensity so close to the 

Descartes rainbow angle, at θ
FB

 = 127.36, is quite severe.  Due to this artifact, the supernumerary 

oscillations of generalized Airy theory for the TM polarization quickly become 180° out of phase 

with the those of Lorenz-Mie-Debye theory for scattering angles beyond the generalized Airy 

theory angular interval of interest, which is now θ ≥128.92° (i.e., θ
R
 = 129.08° and Δ

max
 = 0.16° 

in Table 1).  This spurious 180° shift occurs in the vicinity of the principal TM rainbow peak in 

Fig. 8, at the first supernumerary minimum in Fig. 9, and at the fourth supernumerary minimum 

in Fig. 10.  

The obvious lack of oscillations in the TM intensity of the exact theory in Figs. 8 - 10 is 

caused by the amplitude of the lower supernumerary ray being quite small over a large angular 

interval about the Brewster scattering angle θ
B
 = 115.01°, so that the upper supernumerary ray is 

the dominant contribution to the scattered intensity. 

7.  Special Cases Beyond the Capability of Generalized Airy Theory  

An interesting situation occurs for TM-polarized generalized Airy theory when p = N
2
,
 
so that the 

Descartes rainbow ray and the Brewster ray coincide.  In this case, the coefficient of the Ai(-ζ) 

term of the TM polarization of generalized Airy theory is zero for p = 2, and the coefficients of 

both the Ai(-ζ) term and the Ai′(-ζ) term vanish for p ≥ 3 [23].  Equation (3.29) can be written for 

the special case of p = N
2
 as  

Escatt(r,Θ,φ) ≈ [E0 exp(ikr-iωt)/(kr)] exp(-ipπ/2) exp(i3π/4)   

                        × exp{ix[2pN cos(θt
R
) - 2 cos(θi

R
) + Δ sin(θi

R
)]} 

                        × x
7/6

 [(2πs)
1/2 

/ h
1/3

] [sin(θ)]
-1/2

 

                        × {- cos(φ) uΘ i h
1/6 

L1 F
TM
′(θi

R
) Ai′(-ζ) / x

1/3
  

                            + sin(φ) uφ F
TE

(θi
R
) [Ai(-ζ) + i h

1/6 
M

TE
 Ai′(-ζ) / x

1/3
]}  ,    (7.1) 

where L1 was given in Eq. (2.14a), and  

F
TM
′(θi

R
) ≡ (dF

 TM
/dθi)R = 4pN

2
hc

2
 (2p

2
N

2 
- p

2 
- N

4
) (p - N

2
)
p-2

 / (p + N
2
)
p+2

     (7.2) 

with the convention 

(p - N
2
)
p-2

 = 1 if p = 2 

                 = 0 if p ≥ 3  .          (7.3)  
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Fig. 11  Product of the TE and TM flat interface Fresnel coefficients as a function of the ray angle of incidence, FTE(θi) and FTM(θi), for 

transmission through a sphere following one internal reflection for N = 1.4142.  The tangent to the curves at the angle of incidence of the 

Descartes rainbow ray, θi
R = 54.74°, is also shown. 

 
Fig. 12  Scattered intensity as a function of scattering angle for Lorenz-Mie-Debye theory and generalized Airy theory of Eq. (7.1) for (a) TE and 

(b) TM polarizations, p = 2, N = 1.4142, λ = 0.65 μm, a = 155.2 μm, and x = 1,500 where the Descartes rainbow ray and the Brewster angle ray 

coincide at θR = θB = 148.41°. The principal TM rainbow peak occurs very close to the Descartes rainbow scattering angle. The TM rainbow 

intensity is suppressed with respect to the TE rainbow intensity since the product of the Fresnel coefficients varies linearly about the Brewster 

ray. 
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Since the TM generalized Airy rainbow is described solely by Ai′(-ζ), for p = 2 and N = 2
1/2

, The 

differential equation for the Airy integral (see Eq. (10.4.1) of [20]) can be used to show that the 

top of the principal TM rainbow peak should coincide with the Descartes rainbow scattering 

angle at ζ = 0, or θ
R
 = 148.414°, rather than being shifted to ζ = -0.1088, as is the case for the TE 

rainbow which is dominated by Ai(-ζ).  This is illustrated in Figs. 11 and 12 for p = 2, N = 

1.4142, x = 1,500, where the top of the principal TM rainbow peak occurs at θ = 148.435° in 

Lorenz-Mie-Debye theory and at θ = 148.146° in generalized Airy theory.  The peak intensity of 

the Lorenz-Mie-Debye TM rainbow for p = 2 and N = 2
1/2

 is suppressed with respect to that of 

the TE rainbow because the product of the TM Fresnel coefficients in Fig. 11 vanishes at θi
R
 and 

varies linearly as a function of ε at the start of the supernumerary region.  Fig. 12 shows that 

generalized Airy theory performs well in comparison with Lorenz-Mie-Debye theory, except that 

it underestimates the intensity of the TM minima. 

 

Fig. 13  Product of the TE and TM flat interface Fresnel coefficients as a function of the ray angle of incidence, FTE(θi) and FTM(θi), for 

transmission through a sphere following two internal reflections for N = 1.7321.  The rainbow ray and the Brewster angle ray coincide at θi
R = θi

B 

= 60.00°.  The product of the TM Fresnel coefficients varies quadratically about that point. 
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`  

Fig. 14  Scattered intensity as a function of scattering angle for Lorenz-Mie-Debye theory and generalized Airy theory of Eq. (7.1) for (a) TE and 

(b) TM polarizations, p = 3, N = 1.7321, λ = 0.65 μm, a = 155.2 μm, and x = 1,500.  Generalized Airy theory predicts zero scattered intensity for 

the TM polarization.  The first TM supernumerary minimum for the exact Lorenz-Mie-Debye theory occurs very close to the Descartes rainbow 

scattering angle at θR = θB = 60°.  The TM Lorenz-Mie-Debye rainbow intensity is further suppressed since the product of the Fresnel coefficients 

varies quadratically about the Brewster ray. 

The case of p = 3 and N = 3
1/2

 for TM polarization, shown in Figs. 13 and 14, lies beyond the 

capability of the generalized Airy theory we have described here since the coefficients of both 

Ai(-ζ) and Ai′(-ζ) in Eq. (7.1) are zero, resulting in the erroneous suppression of TM polarization 

in Fig. 14(b).  A further generalization of Airy theory would allow Δ-dependence of the 

coefficient multiplying Ai(-ζ). [23]  If this were to be the case, the scattered electric field would 

be proportional to -ζ Ai(-ζ).  The top of the principal TM rainbow peak would occur when 

Ai(ζ) + ζ Ai′(ζ) = 0  ,          (7.4) 

which gives ζ ≈ 0.88 or θ = 60.7°.  The first supernumerary minimum would occur when ζ = 0 or 

θ
R
 = 60.000°.  The prediction for the top of the principal rainbow peak compares favorably with 

the Lorenz-Mie-Debye theory result of Fig. 14 for p = 3, N = 1.7321, x = 1,500 where θ = 

60.641°.  The prediction for the first supernumerary minimum also compares favorably with the 

Lorenz-Mie-Debye theory result of θ = 59.981°.  The suppression of the Lorenz-Mie-Debye TM 

rainbow for p = 3 and N = 3
1/2

 is more severe than it was for p = 2 and N = 2
1/2

 since the product 

of the Fresnel coefficients in Fig. 13 varies quadratically as a function of ε at the start of the 

supernumerary region.   This suppression can be colloquially thought of as the Brewster angle 

effect eating a hole in the TM rainbow. 
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8.  Conclusions 

Airy’s theory of the rainbow for scattering of a monochromatic plane wave by a single spherical 

particle is now almost two hundred years old.  Although it is widely understood that it provides a 

very good qualitative understanding of many of the features of the rainbow, it is also widely 

believed to have some degree of difficulty in quantitatively describing the details of the scattered 

electric field.  With the much more sophisticated light-scattering-based theories of the rainbow 

developed since then, people may easily wonder if there is anything new or useful left to say 

about Airy theory.  This study has attempted to show that there is in fact much more to say about 

it.  Lorenz-Mie-Debye theory exactly describes the p ≥ 2 rainbows observed in light scattered by 

a spherical particle.  But since the scattered electric field is the sum of the contribution of an 

infinite number of partial waves, the effects hidden within the theory are difficult to see in the 

structure of its equations.  The original version of Airy theory assumed that all points on the 

wavefront exiting the sphere in the vicinity of the Descartes rainbow ray have a constant 

amplitude.  As a result, it provides a simple but elegant first-order approximation to the exact 

results of Lorenz-Mie-Debye theory.  On the other hand, the CAM-CFU approach uses the actual 

amplitude variation, and provides a high-level, but complicated, approximation.  Since the 

generalized Airy theory studied here models the amplitude variation of the exiting wavefront in 

the vicinity of the Descartes rainbow ray by a linear function, it lies intermediate between the 

original version of Airy theory and the CAM-CFU uniform approximation.  This gives it various 

advantages and disadvantages. 

On the plus side, the introduction of the Ai′(-ζ) term, multiplied by a constant coefficient, 

provides a much better fit to the exact results of Lorenz-Mie-Debye theory over a much broader 

range of sphere sizes than did the original version of Airy theory, with very little additional 

computational cost.  For the TE polarization, p = 2, and N = 1.333 it was surprisingly found in 

[21] that the original version of Airy theory fit the exact results quite well for x = 1,933 and even 

x = 483, when van de Hulst’s criterion [7] could not guarantee that the fit would be quantitatively 

accurate for x < 5,000.  Generalized Airy theory allows one to explain and understand this in a 

natural way. 

On the negative side, truncating the amplitude modeling of the outgoing wavefront at the 

linear term creates a false Brewster angle artifact in both the TE and TM polarizations.  This 

turns out to be of no consequence for both the TE polarization and N = 1.333, and for the TM 

polarization, p = 2, and N = 1.333.  However, the false Brewster angle artifact seriously corrupts 

the fit to the exact data for the TM polarization, p ≥ 3, and N = 1.333, beginning almost 

immediately beyond what we have called the angular interval of interest, where the fit to the 

exact results is quite good. 

In summary, Airy theory has long been considered to be a reasonably good qualitative 

approximation to the exact Lorenz-Mie-Debye results in the vicinity of the rainbow.  Its 

generalization described here should raise its status to a quantitatively good approximation for 
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the most commonly observed rainbow, namely p = 2, and the reasons for its serious 

shortcomings for p ≥ 3 are now much better understood. 
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