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a b s t r a c t

We calculated scattering of an electromagnetic plane wave by both a radially-
inhomogeneous particle and bubble, the square of whose refractive index profile is
parabolic as a function of radius. Depending on the value of the two adjustable parameters
of the parabola, the particle or bubble can have either a refractive index discontinuity at
its surface, or the refractive index can smoothly merge into that of the exterior medium.
Scattering was analyzed in ray theory, and various novel features of the scattering,
including the details of the curved ray paths, transmission rainbows, and near-critical-
angle scattering were apparent and were contrasted with their behavior for scattering by
a homogeneous sphere.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Much has been learned about the interaction of elec-
tromagnetic radiation with macroscopic matter by exam-
ining scattering of an incident plane wave or a transversely
localized beam by a homogeneous dielectric spherical
particle. It is also of both theoretical and practical interest
to understand the details of scattering of electromagnetic
radiation by a radially-inhomogeneous sphere. In this new
setting, one would expect to revisit all the familiar phe-
nomena encountered in scattering by a homogeneous
sphere. But, in addition, either new phenomena might
occur which are impossible for the more specialized
geometry of a homogeneous sphere, or familiar phenom-
ena may occur in totally new ways. Toward that end, in
this paper, we study scattering of a plane wave by a
particular type of radially-inhomogeneous sphere called
a generalized Luneburg lens (GLL). We do this not because
of the practical utility of these particles or their ubiquity in
nature (although manufactured Luneburg lenses are used
as directional antennas for microwaves [1]), but because
every aspect of the scattering is analytically soluble in ray
theory. This is of considerable importance given the
paucity of available analytic solutions for radially inhomo-
geneous media [2]. The general phenomena we encounter
are not specific to scattering by a GLL, but are expected to
occur to some degree for scattering by a wide variety of
generically similar radially-inhomogeneous profiles. Pre-
vious studies of scattering by a Luneburg lens and some of
its variants are analyzed in [1,3–11].

Depending on the value of the two parameters describ-
ing the GLL, 15 distinct scattering geometries are possible.
In this paper, we examine 11 of these geometries using ray
theory, which in most cases gives a close approximation to
wave scattering in the small wavelength limit. The body
of this paper is organized as follows. In Section 2, we
enumerate the 11 different GLL geometries to be examined
and preview a few of their more interesting behaviors.
In Section 3, we determine various properties of ray scatte-
ring of particle-like GLLs, concentrating on the deflection
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angle as a function of the angle of incidence, the shape of
the curved ray path inside the GLL, the optical path length
from a ray's entrance plane to its exit plane, and the
scattered intensity. In Section 4, we do the same for
bubble-like GLLs. In Section 5, we briefly comment on
our more unusual, significant, and interesting results. To
complete our study of GLLs, the most interesting scattering
features appearing in ray theory are examined in a
companion paper [12] using wave theory by approximat-
ing the radially-inhomogeneous sphere by a finely-
stratified multi-layer sphere, and in the time domain by
considering scattering of a femtosecond pulse by the
sphere.

2. Refractive index profile

We consider an electromagnetic plane wave of ampli-
tude E0, wavelength λ, wave number k¼2π/λ, linearly
polarized in the x direction, and propagating in the þz
direction in an external medium of refractive index 1. The
plane wave is scattered by a GLL of radius a whose center
is at the origin of coordinates, and has the radially
inhomogeneous refractive index profile

N rð Þ ¼ 2B–C r=a
� �2h i1=2

; ð1Þ

where B and C are the positive or negative constants. This
has previously been called the parabolic distribution [13]
because the dielectric constant of the sphere varies para-
bolically in r. The (B, C) parameter space of Eq. (1) is shown
in Fig. 1.

For the case of C40, the GLL is particle-like in region η
and on the line γαβ, for which

2BZCþ1: ð2Þ
This portion of (B, C) space is characterized by the
refractive index being a decreasing function of r with N
(a)Z1. Since 2B4Cþ1 in region η, N(a)41 and there is a
refractive index discontinuity at the sphere surface. As a
result, the GLL is said to have a hard edge. Since 2B¼Cþ1
Fig. 1. (B, C) parameter space.
on line γαβ, N(a)¼1 and the GLL is said to be edgeless [3].
A GLL represented by point α is the original edgeless
Luneburg lens for which an incident plane wave focuses on
the sphere axis at its back surface [3]. The points on the
line segments β and γ represent the edgeless modified
Luneburg lenses studied in [9–11] which were previously
found to have either no transmission rainbows (hereafter
called bows because the Luneburg spheres have nothing to
do with rain) or one transmission bow, respectively. The
points in region η represent hard edge particle-like GLLs
that will be shown in Section 3 to have either zero or two
transmission bows. In region ν the refractive index of the
GLL is a decreasing function of r with and 0rN(r)r1 for
0rrra. Since N(a)r1, it resembles a radially inhomoge-
neous air bubble in water, and is said to be bubble-like.

For the case of Co0 and

Cr2BrCþ1; ð3Þ
corresponding to regions ξ and σ and line δεζ in Fig. 1,
the GLL is bubble-like with N(r) being an increasing
function of r. Depending on whether N(a)¼1 or N(a)o1
the GLL is either edgeless or has a hard edge. Points on the
line segments δ and ζ represent edgeless bubble-like
modified Luneburg lenses that will be seen in Section 4
to have either one or zero transmission bows, respectively.
The GLL represented by point ε is an edgeless bubble-like
sphere whose refractive index profile reduces to N(r)¼r/a.
Similarly, points in region ξ represent hard edge bubble-
like GLLs that will also be shown in Section 4 to have
either zero or two transmission bows. In region ψ the GLL
is particle-like with N(r) being an increasing function of r.
Points in region σ are bubble-like GLLs that will be shown
to have no transmission bows, but have quite a different
ray trajectory inside the bubble than is the case in region ξ.
This is due to the fact that in region σ the refractive index
changes from positive to imaginary at some radius inside
the sphere. Certain features of the ray scattering of a GLL
turn out to be discontinuous at points α and ε from their
behavior on the adjacent line segments β and γ, and δ and
ζ, respectively. Similarly, certain ray scattering features on
the line segments β, γ, δ, ζ have discontinuities from their
behavior in the adjacent regions η, ξ, and σ. These points
will be addressed more completely in Section 4.

Lastly, the line segment 0oBo1/2, C¼0 describes a
homogeneous bubble and the line segment 1/2oB, C¼0
describes a homogeneous particle which can be analyzed
using Lorenz–Mie theory. The regions ρ1, ρ2, and ρ3 in
Fig. 1 have N(r)41 for some radii inside the sphere and N
(r)o1 for other radii. This geometry has a mixed character,
which could, in principle, be realized by placing a particle-
like GLL in an external medium whose refractive index is
intermediate between N(0) and N(a), and then considering
the relative refractive index. These mixed cases will not be
considered here. A GLL in region μ, for which N(a) is
imaginary will also not be considered here. For C40 this
would correspond to an incident wave becoming evanes-
cent as it crosses the sphere surface, and remaining so a
certain distance inside the sphere, resembling a tunneling
situation.

We label the various scattering process according to the
notation for the Debye series decomposition of the partial
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wave scattering amplitudes for a homogeneous spherical
particle [14–16]. The combination of diffraction and exter-
nal reflection is denoted by p¼0, direct transmission is
p¼1, and transmission following p–1 internal reflections is
pZ2. Neither internal nor external reflection can occur at
the surface of an edgeless GLL. As a result, the only
scattering processes are diffraction and transmission. In
contrast, all Debye series scattering processes occur for
GLLs having a hard edge.

In the context of ray theory, the path of a geometrical
light ray within a radially-inhomogeneous medium is
curved, and is identical to the curved trajectory of a point
mass of energy E in the external potential U(r) of a
conservative force field centered at the origin and given
by [17]

U rð Þ ¼ –E N2 rð Þ–1
h i

: ð4Þ

The force field is attractive when C40, and it is repulsive
when Co0. Thus one can use the intuition obtained from
this mechanical analogy to understand the details of the
curved ray path in the corresponding optical problem.
3. Ray scattering by a Luneburg sphere having C40

3.1. Deflection angle and properties of the ray path

We first consider the case C40. Let θi be the angle of
incidence of an incoming ray at the sphere surface, and Θ
be the deflection angle of the corresponding exiting ray.
We use the sign convention that Θ40 if the incident ray
propagates above the horizontal z axis and the outgoing
deflected ray propagates below the z axis as in Fig. 2
below. Similarly, Θo0 if both the incident and outgoing
deflected ray propagate above the z axis as in Fig. 5 below.
The deflection angle for a specific Debye process is
denoted by Θp. Transmission of a ray through the GLL is
calculated using the formula for the deflection of a point
particle in an arbitrary potential U(r) [18] or the curvature
of a ray in a medium of arbitrary refractive index [19],
applied to the special case of the external potential of
Eq. (4). For C40, the transmission deflection angle Θ1 is
constrained to be in the interval 01rΘ1r1801. This is
evident in Fig. 2 for the special case B¼1.5, C¼2 on line
segment β in Fig. 1. Using the formula for Θ1, the
Fig. 2. Ray tracing for a GLL with B¼1.5 and C¼2 (on line segment β of
Fig. 1).
deflection angle for transmission following p–1 internal
reflections for arbitrary pZ1 of a GLL represented by a
point in regions η or ν of Fig. 1 is found to be

Θp ¼ p�2ð Þπ=2þ2θiþp arcsin B– sin 2 θi
� �h i

B2–C sin 2 θi
� �h i1=2� �

:

�

ð5Þ
In the particle-like region η, Eq. (5) is valid for 01rθi

r901, while in the bubble-like region ν it is valid only for
01rθirθi

C
where θi

C
is the critical angle for total external

reflection given by

sin θC
i

� �
¼ 2B–Cð Þ1=2: ð6Þ

In region ν, the deflection angleΘ(θi) approachesΘ(θi
C
)

with infinite slope as θi approaches θi
C
. In the context of

ray theory, incident rays with θiZθi
C
are totally externally

reflected at the surface and never enter the GLL. An
identical effect occurs for scattering of a plane wave by a
homogeneous air bubble in water [20–22].

In the mechanical analogy to C40, since the refractive
index is a decreasing function of r, a point mass moves
under the influence of an attractive external potential. It
accelerates toward the force center as it passes its location,
and the trajectory curves around the origin. Consistent
with this qualitative observation, the shape of a transmis-
sion ray path inside the particle-like GLL of region η and
the bubble-like GLL of region ν is found to be a section of
an ellipse, as is shown in Fig. 2 and is parameterized as
follows. Consider the z axis to be horizontal and the ρ axis
(i.e. x or y axis) to be vertical. The axes z0 and ρ0 are rotated
clockwise with respect to the z, ρ axes by the (negative)
angle �Θ1/2 (i.e. they are rotated counterclockwise). After
much algebra, the elliptical path of a transmitted ray inside
the GLL is given by

ρ02= u–vð Þa2	 
þz02= uþvð Þa2	 
¼ 1; ð7Þ

where

u¼ B=C ð8aÞ

v¼ B2–C sin 2 θi
� �h i1=2

=C: ð8bÞ

The point of closest approach of a ray to the origin
along its curved path is given by z0 ¼0 in Eq. (7). The
greatest difference between the ray paths in regions η and
ν is that since N(a)41 in region η, the ray path refracts at
the sphere surface toward the sphere center before it
continues to smoothly curve in the same sense once inside
the GLL. On the other hand since N(a)o1 in region ν the
ray path initially refracts at the sphere surface away from
the sphere center before it smoothly curves toward the
center thereafter.

The integral of ds along the elliptical ray path is an
elliptic integral of the second type, but the integral of the
optical path length Nds for the refractive index profile of
Eq. (1) is analytically soluble. The optical path length
between a ray's entrance and exit planes, which are
perpendicular to the ray's direction in the exterior med-
ium and tangent to the sphere surface, is

Lp ¼ a 2–2cos θi
� �þpS

	 
 ð9Þ
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with

S¼ 2B–C� sin 2 θi
� �h i1=2

þ2uC1=2arccot uþvð Þ= u–vð Þ	 
1=2 tan θi–Θ=2
� �n o

:

ð10Þ
The time delay Δt between a ray's transit from its

entrance plane to its exit plane is

Δt ¼ Lp=c; ð11Þ
where c is the speed of light in the exterior medium. This
result will be central for the construction of time domain
scattering graphs in [12].

For the special case 2B¼Cþ1 for an edgeless GLL
represented by point α or a point on line segments β
and γ of Fig. 1, Eq. (5) for the transmission deflection angle
simplifies to

Θ1 ¼ arccos 1þC cos 2θi
� �	 


1þ2C cos 2θi
� �þC2

h i1=2� �
:

�

ð12Þ
This result was also obtained in [9] with C¼1/f2 in the

notation of that paper. As a mathematical note, the arcsine
term in Eq. (5) is always an angle between �901 and
þ901, thus the branch of the arcsine function to be used is
unambiguous. Similarly, the deflection angle in Eq. (12) is
always between 1801 and 1801, and the branch of the
arccosine function to be used is also unambiguous. The
expression for S in Eq. (10) does not simplify appreciably
for an edgeless particle-like GLL, and thus no counterpart
to Eq. (12) is listed here.

The geometry becomes especially simple for the origi-
nal edgeless Luneburg lens represented by point α. Taking
the C-1 limit of Eqs. (7–10) and (12), the deflection angle
is

Θ1 ¼ θi; ð13Þ
the shape of the ray path is

ρ02= 2a2 sin 2 θi=2
� �h i

þz02= 2a2 cos 2 θi=2
� �	 
¼ 1; ð14Þ

and the optical path length from the entrance plane to the
exit plane is

L1 ¼ a 2þπ=2– cos θi
� �	 


: ð15Þ
There is a pleasing analogy between the ray path of the

critical ray for total external reflection for a bubble-like
GLL in region ν and the grazing incidence ray for an
edgeless particle-like GLL. First, when θi¼θiC and B4C in
region ν, the ellipse of Eq. (7) lies outside the GLL except at
the point where the incident ray tangentially touches the
surface, as well as the corresponding point on the other
side of the GLL. Thus the transmitted ray path consists of a
single point on the surface. This is in analogy to the path of
the grazing incidence ray for an edgeless GLL on line
segment γ (see Fig. 2c of [9]) which tangentially touches
only one point on the sphere surface as it passes it by.
Second, when θi¼θiC and B¼C in region ν, the ellipse of Eq.
(7) degenerates into a circle that coincides with the GLL
surface. In analogy to the behavior of the grazing incident
ray for an edgeless GLL at point α (see Fig. 2a of [9]), the
critical ray in region ν travels 901 on the sphere surface
before exiting toward the far-zone. Third, when θi¼θiC and
BoC in region ν, the ellipse of Eq. (7) lies everywhere
inside the GLL except at the ray's entrance and exit points
where it is tangent to the surface. As was the case for a GLL
on line segment β (see Fig. 2b of [9]), the ray travels on the
interior elliptical path for 1801 before exiting the GLL. We
will return to this point in [12] when we examine the
morphology-dependent resonances of a bubble-like GLL in
region ν.

Some of the discontinuities alluded to in Section 2 are
now apparent. For example, for the on-axis incident ray
with θi¼01 the transmission deflection angle is Θ1¼01
independent of whether the GLL is represented by point α
of Fig. 1, a point on line segments β or γ near point α, or a
point in region η near line γαβ. But for grazing incidence
with θi¼901, one hasΘ1¼01 for a point on line segment γ,
Θ1¼901 at point α, Θ1¼1801 for a point on line segment
β, and 01oΘ1o1801 for a point in region η. The value of
Θ1(θi¼901) has a major impact on the presence or absence
of p¼1 transmission bows. For a point on line segment γ,
the derivative dΘ1/dθi is positive for θi¼01 and it is
negative for θi¼901, necessitating a relative maximum
somewhere in between to change the sign of the slope.
The relative maximum is a transmission bow, denoted
here by the superscript R. The rainbow scattering angle
Θ1

R¼arcsin(C) results when θi
R¼arcsin(B1/2) as shown in

Fig. 3a, b for the special case B¼0.75, C¼0.5. The ray
trajectories in Fig. 3a show that the near-zone transmis-
sion spherical aberration caustic of revolution points
toward the sphere – rather than away from it as is the
case for the near-zone spherical aberration transmission
caustic of a homogeneous sphere. In addition, the
outward-pointing arms of the caustic of Fig. 3a evolve into
the near-zone rainbow. Fig. 3b shows the deflection angle
Θ1 as a function of the angle of incidence θi with its
relative maximum. Similarly, for points on line segment β
and in region η, dΘ1/dθi is positive for both θi¼01 and
θi¼901. For either a point on line segment β or in region η
not close to line segment γ, the transmission scattering
angle Θ1 is relatively large for θi¼901, the derivative
remains positive over the entire θi interval, and no
transmission bow occurs. But if the GLL in region η is
sufficiently close to line segment γ, Θ1 is relatively small
for θi¼901 and there is a relative maximum bow that
represents a continuation of the relative maximum bow
encountered on line segment γ. The derivative turns
negative after the relative maximum and requires a
relative minimum as is shown in Figs. 3b for B¼0.76,
C¼0.5 to turn the derivative positive again. This gives rise
to two distinct transmission bows in the p¼1 Debye series
channel. Substituting into Eqs. (9) and (10), the relative
maximum bow is also a relative maximum of the optical
path length, and the relative minimum bow that follows it
is also a relative minimum of the optical path length. The
presence of two bows in a given p-channel has already
been noted for various other refractive index profiles
[23,24].

The transmission bow of an edgeless particle-like GLL
represented by a point on line segment γ has three notable
differences from the well-known one-internal-reflection
rainbow of a spherical water droplet. (i) Although a trans-
mission bow (which is also sometimes called Newton's



Fig. 3. (a) Ray tracing for a GLL with B¼0.75 and C¼0.5, (b) Deviation as
a function of angle of incidence θi for GLLs with B¼0.75, C¼0.5 (on line
segment γ of Fig. 1) and B¼0.76, C¼0.5 (in region η).
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zero-order rainbow [25]) cannot occur for scattering of a
plane wave by a homogeneous sphere, it does occur for
some particle-like edgeless GLLs. (ii) Although the pZ2
bows of a homogeneous sphere are a relative minimum of
both the scattering angle and the optical path length, the
first transmission bow of a GLL is a relative maximum of
both. Relative maximum bows are also known for various
other radially inhomogeneous refractive index profiles,
and are on some occasions associated with the near-
onset of the semi-classical effect of orbiting [26,27]. (iii)
The rainbows of a homogeneous water sphere are strongly
TE polarized because the internal reflection occurs near
the Brewster angle which greatly attenuates the TM
polarization. In contrast, the transmission bow of an
edgeless particle-like GLL occurs equally strongly in both
polarizations since no internal reflections are involved.

The scattering angle of the two transmission bows of a
hard edge particle-like GLL represented by a point in
region η near line segment γ cannot be determined
analytically. However, as a specific example of their
numerical evaluation, we consider the case of C¼0.50.
Substituting into Eq. (5) we found that when 0.75oBo
0.773, Θ1(θi) has a broad relative maximum that evolved
from the relative maximum of the edgeless GLL with
B¼0.75, C¼0.5 on line segment γ, and is followed by a
narrow relative minimum that occurs for near-grazing
incidence. When B¼0.76, C¼0.5 in region η, Fig. 3 predicts
that the Descartes angle of the relative maximum bow is
Θ1¼31.431 when θi¼631 and that of the relative mini-
mum bow is Θ1¼25.361 when θi¼841. As B increases for
fixed C, Θ1(θi¼901) increases, and the relative maximum
and minimum of Θ1 approach each other and finally
coalesce when BE0.773. For larger B, Θ1(θi) is monotoni-
cally increasing and no transmission bow occurs. If the
value of B were such that the maximum and minimum
bow were near coalescence, the transmission angle Θ1

would be nearly constant over a relatively large range of
incident rays, leading to enhanced scattering at that angle.
This was also noted in [28].

The number of p¼1 bows in the bubble-like region ν is
complicated by the fact that as was mentioned earlier, the
refracted direction of a light ray at the surface of the
Luneburg sphere is opposite to that within the sphere. At
the surface Θ1 curves in the negative angular direction,
while inside the sphere it curves in the positive angular
direction. The number of p¼1 bows depends on the
interplay between two different conditions. First, Θ1(0)¼
0 and

dΘ1=dθi
� �

θi ¼ 040 if C42B–4B2

o0 if Co2B–4B2: ð16Þ

Second, there is a discontinuity in the deflection angle
evaluated at θi

C

Θ1 θi
c� �¼ 2θi

c
–1801 if CoB

2θc
i –901 if C ¼ B

2θc
i if C4B

; ð17Þ

which was alluded to earlier when the path of the critical
ray was described. When C42B–4B2 and CrB in sub-
region (i) of region ν in Fig. 4, Θ1(θi) starts out being
positive and ends up being negative, producing a relative
maximum bow. Similarly, when Co2B–4B2 and C4B in
subregion (ii),Θ1(θi) starts out being negative and ends up
being positive, producing a relative minimum bow. On the
other hand, when C42B–4B2 and C4B in subregion (iii)
or Co2B–4B2 and CrB in subregion (iv), Θ1(θi) starts out
being positive (negative) and ends up being positive
(negative), implying the existence of either zero or two
p¼1 bows. Numerical testing determined that there are
two bows for points in subregion (iii) immediately above
the C¼B line when 0.25rBr0.5. There are no p¼1 bows
elsewhere in these two portions of region ν. This is exactly
what occurred in region η immediately below line
segment γ.

As a final note, we only consider transmission bows in
detail here because the general rainbow morphology of
GLL scattering is already evident at this level. It only
remains to be seen how many bows can occur in a given
p-channel for various values of B and C. For example,
although we have not determined whether three bows can
occur in a single pZ2 channel for a GLL, we have found
this to be the case for other specially constructed refractive
index profiles that will be published separately.
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3.2. Scattered intensity

The scattered intensity of rays making p–1 internal
reflections at the surface of the Luneburg sphere may be
obtained using flux conservation [29], giving

Ip Θp
� �¼ I0 a2=R2

� �
T21 θi

� �
R11

p�1 θi
� �

T12 θi
� �

sin θi
� �

cos θi
� �

= sin Θp
� �	 


dΘp=dθi
�� ���1

; ð18Þ

where I0¼E0
2
/(2μ0c), μ0 is the permeability of free space

and R is the far-zone distance of the observation point
from the center of the sphere. In addition, T21, R11, and T12
are the TE or TM Fresnel intensity coefficients for trans-
mission from the external medium into the sphere, inter-
nal reflection, and transmission from the sphere interior to
the external medium. When 2BaCþ1 for a hard edge
particle-like GLL in region η or a hard edge bubble-like
GLL in region ν, Eq. (18) can be analytically evaluated in
terms of θi using Eq. (5). But the result is complicated
because the deflection angle function Θp(θi) cannot be
analytically inverted for any value of p. However when
2B¼Cþ1 for an edgeless particle-like GLL (represented by
a point on line segments β or γ of Fig. 1), the results
simplify greatly because (i) the particle participates in only
diffraction and transmission scattering, (ii) the function
Θ1(θi) is analytically invertible, and (iii) T12(θi)¼T21(θi)¼1.
The transmission deflection angle Θ1 is a monotonically
increasing function of θi for a GLL represented by a point
on line segment β of Fig. 1. Eq. (12) can then be inverted to
give

cos 2θi
� �¼ � sin 2 Θ1

� �þ cos Θ1
� �

C2– sin 2 Θ1
� �h i1=2� �

=C:

ð19Þ
Substitution of Eq. (19) into Eq. (18) gives the ray theory
transmitted intensity

I1 Θ1
� �¼ I0 a2=R2

� �
cos Θ1

� �þ C2– sin 2 Θ1
� �h i1=2� �2

= 4C C2– sin 2 Θ1
� �h i1=2� �

: ð20Þ

Although these results were reported in [9], they are
repeated here in order to provide a comparison with the
results of Section 4.2 for an edgeless bubble-like GLL
having Co0.

Consider next a GLL represented by a point on line
segment γ. Although the deflection angle function Θ1(θi)
possesses a relative maximum bow, it can be inverted on
both supernumerary branches to give

cos 2θi
� �¼ – sin 2 Θ1

� �
7 cos Θ1

� �
C2– sin 2 Θ1

� �h i1=2� �
=C;

ð21Þ
where the upper sign holds for 01rθirθi

R
and the lower

sign holds for θi
Rrθir901. As was noted in [9], this result

is interesting in that for one-internal-reflection scattering
by a homogeneous sphere the deflection angle Θ2(θi)
cannot be analytically inverted on either side of the first
order bow. Substituting Eq. (21) into Eq. (18), the ray
theory transmitted intensity on either supernumerary
branch is

I1 Θ1
� �¼ I0 a2=R2

� �
cos Θ1

� �
7 C2– sin 2 Θ1

� �h i1=2� �2

= 4C C2– sin 2 Θ1
� �h i1=2� �

; ð22Þ

where the range of θi for the upper and lower signs is the
same as for Eq. (21). It should be noted that the ray theory
intensity of Eq. (22) diverges at Θ1

R
. In addition, both

supernumerary branches of I1(Θ1) extend over the full
interval 01rΘ1rΘ1

R
. This is in contrast to one-internal-

reflection scattering by a homogeneous sphere where the
smaller impact parameter branch extends over the full
interval Θ2

RrΘ2r1801 in ray theory while the larger
impact parameter branch extends only for Θ2

RrΘ2r2π�
4 arcsin(1/N). Consider lastly the original Luneburg lens
represented by point α of Fig. 1. The scattered intensity is
[6,9]

I1 Θ1
� �¼ I0 a2=R2

� �
cos Θ1

� �
for 01rΘ1r901

0 for 901rΘ1r1801
:

ð23Þ

4. Scattering by a Luneburg sphere having Co0

4.1. Deflection angle and properties of the ray path

The mechanical analogy of a GLL with Co0, where the
refractive index is an increasing function of r, is a point
mass moving in a repulsive external potential. It acceler-
ates away from the force center as it passes by, and
the trajectory curves away from the origin. Consistent
with this qualitative prediction, the ray path inside a



Fig. 5. Ray tracing for a GLL with B¼0.125 and C¼�0.25 (in region ξ of
Fig. 1).

Fig. 6. Ray tracing for a GLL with B¼0 and C¼�1 at point ε of Fig. 1.
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bubble-like GLL in region ξ or a particle-like GLL in region
ψ is found to be a segment of a hyperbola. The hyperbolic
path in regions ξ and ψ of Fig. 1 will be seen to be very
different from that of region σ. As mentioned previously,
this is due to the fact that in region σ the refractive index
changes from positive to imaginary at some radius inside
the sphere. This point will be discussed later in this
section.

We first consider regions ξ and ψ. The transmission
deflection angle lies in the interval �1801rΘ1r01 as is
shown in Fig. 5 for the special case B¼0.125, C¼�0.25 in
region ξ. Using the same methods of analysis as in Section
3, the deflection angle for arbitrary pZ1 is

Θp ¼ p�2ð Þπ=2þ2θiþp arcsin B� sin 2 θi
� �h i

= B2þ Cj j sin 2 θi
� �h i1=2� �

:

ð24Þ
In region ψ, Eq. (24) is valid for all angles of incidence
01rθir901. But in region ξ it is limited to 01rθirθi

C

where the critical angle for total external reflection is
given by

sin θC
i

� �
¼ 2BþjCj½ �1=2: ð25Þ

The critical angle limitation applies only to hard-edge
bubble-like GLLs in region ξ of Fig. 1 with 2BoCþ1, and
not for the edgeless bubble-like GLLs on line δεζ where
2B¼Cþ1 and Eq. (25) gives θi

C¼901.
For the hyperbolic ray path inside the GLL, the (z0, ρ0)

axes are now rotated clockwise with respect to the (z, ρ)
axes by the (positive) angle �Θ1/2 (since Θ1 is negative),
and the equation of the path inside a GLL is

ρ02= v–uð Þa2	 

–z02= vþuð Þa2	 
¼ 1; ð26Þ

where

u¼ B= Cj j ð27aÞ

v¼ B2þ Cj j sin 2 θi
� �h i1=2

= Cj j: ð27bÞ

The point of closest approach of the ray to the origin is
again given by z0 ¼0 in Eq. (26). The only difference
between the ray paths in regions ξ and ψ is that since N
(a)o1 in region ξ, the ray path is refracted at the sphere
surface away from the sphere center before it continues to
smoothly curve in the same sense once inside the GLL. On
the other hand since N(a)41 in region ψ the ray path
initially is refracted at the sphere surface toward the
sphere center before it smoothly curves away from the
center thereafter. The optical path length of a ray from its
entrance plane to its exit plane and that makes p–1
internal reflections within the GLL is given by Eq. (9), but
with

S¼ 2Bþ Cj j� sin 2 θi
� �h i1=2

þ2u Cj j1=2arccoth vþuð Þ= v–uð Þ	 
1=2 tan θi–Θ=2
� �n o

:

ð28Þ
For the edgeless bubble-like GLL represented by a point

on line segment δ of Fig. 1, Eq. (24) with p¼1 reduces to

Θ1 ¼ arccos 1– Cj j cos 2θi
� �	 


= 1–2 Cj j cos 2θi
� �þ Cj j2

h i1=2� �
:

ð29Þ
For special case of point ε, the results further simplify to

Θ1 ¼ θi–π=2; ð30Þ

L1 ¼ a 2– cos θi
� �	 


; ð31Þ
and the shape of the ray path is

ρ02= a2 sin θi
� �	 


–z02= a2 sin θi
� �	 
¼ 1; ð32Þ

which is shown in Fig. 6.
In Fig. 6 the grazing incidence ray is transmitted in the

forward direction. Incident rays with 9014θi401 enter
the sphere and are deflected by increasingly negative
angles. The trajectory of the on-axis ray with θi¼01 has a
discontinuous slope at the origin where N(0)¼0. The
incident ray comes in along the –z axis to the origin, turns
901, and then propagates outward along the ρ axis. This
discontinuity is due to the non-physical nature of the
refractive index being zero at that point.

The structure of the transmission bows of an edgeless
bubble-like GLL represented by a point on either line
segment δ or ζ of Fig. 1 is quite similar to that of the
edgeless particle-like GLL on line segment γ or β. No bow
occurs for a GLL on the line segment ζ, but on the line
segment δ the function Θ1(θi) has a relative minimum at



Fig. 7. (a) Ray tracing for a GLL with B¼0.25 and C¼�0.5. (b) Deviation
as a function of angle of incidence θi for GLLs with B¼0.25, C¼�0.5 (on
line segment δ of Fig. 1) and B¼0.24, C¼�0.5 (in region ξ).

Fig. 8. Ray tracing for a GLL with B¼�0.5 and C¼�1.5 (in region σ of
Fig. 1).
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the deflection angle Θ1
R¼arcsin(� |C|), which occurs when

θi
R¼arcsin(B1/2) as is shown in Fig.7a, b for the special case

of B¼0.25, C¼�0.50. Fig. 7a shows the near-zone rainbow
caustic in the vicinity of the bubble-like Luneburg sphere.
An analogous near-zone behavior occurs for the p¼2
rainbow of a homogeneous sphere [30], but differs from
the near-zone behavior of the rainbow of the particle-like
GLL shown in Fig. 3a. Fig. 7b graphs the deflection angle
Θ1 as a function of the angle of incidence θi, and shows the
rainbow relative minimum.

Substitution into Eq. (28) verifies that the bow is a
relative minimum of the optical path length as well. In
addition, for a hard edge bubble-like GLL in region ξ,
Fig. 7b also shows that if a relative minimum bow occurs
that has evolved from that of an edgeless bubble-like GLL
on line segment δ, it reverses the sign of dΘ1/dθi. It thus
must be followed by a relative maximum bow occurring
for θioθi

C
in order to reverse the sign of the derivative

again so that it has the correct sign for the critical angle
ray. For the special case of B¼0.25, C¼�0.5 on line
segment δ, Fig. 7b predicts that the Descartes angle of
the relative minimum bow is Θ1¼301 when θi¼301. For
B¼0.24, C¼�0.5 in region ξ the relative minimum bow
has shifted to Θ1¼�31.341 when θi¼301 and the relative
maximum bow occurs at Θ1¼-12.141 when θi¼79.11. The
critical angle for this case is Θ1

C¼�15.541 when
θi
C¼81.851.
As was the case in region ν, the number of p¼1 bows in

region ψ is complicated by the fact that the direction of a
refracted ray at the sphere surface differs from that within
the sphere. In region ψ one has Θ1(0)¼0 and

dΘ1=dθi
� �

θi ¼ 040 if Cj jo4B2–2B

o0 if Cj j44B2–2B: ð33Þ

In addition, Θ1(901)40. Thus when |C|o4B2–2B in sub-
region (v) of region ψ in Fig. 4, the p¼1 deflection angle
starts out negative and ends up positive, producing a
relative minimum bow. When |C|44B2–2B in subregion
(vi) the deflection angle starts out positive and ends up
positive, implying the existence of either zero or two bows.
Numerical testing determined that there were no
p¼1 bows.

Finally, we consider a hard edge bubble-like GLL
represented by a point in region σ of Fig. 1. The deflection
angle of a ray making p–1 internal reflections inside the
sphere is

Θp ¼ p�2ð Þπ=2þ2θiþp arcsin Bj jþ sin 2 θi
� �h in

= Bj j2þ Cj j sin 2 θi
� �h i1=2�

; ð34Þ

which for p¼1 reduces to Eq. (29) the 2B¼Cþ1 limit on
line segment ζ. Again, the angle of incidence is limited to

sin θi
� �

r sin θC
i

� �
¼ �2 Bj jþjCj½ �1=2: ð35Þ

Total external reflection occurs at larger angles of inci-
dence, as can be seen in Fig. 8 for B¼�0.5, C¼�1.5.

The difference between the shape of the hyperbolic ray
paths in Figs. 5 and 8 is now apparent. The transmission
angle of the on-axis incident ray is 01 on line segment δ
and in region ξ. In the mechanical analogy this is because a
particle directly incident on the potential energy hill has
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sufficient energy to cross over the top and continue down
the other side. But on line segment ζ and in region σ
incident rays with small impact parameters penetrate only
part way into the sphere before turning around and exiting
in the near-backscattering direction. In the mechanical
analogy this is because the corresponding point particle
does not have enough energy to pass over the top of the
potential hill. It travels part way up the hill, momentarily
stops, and then travels back down in the direction from
which it came. This behavior occurs because in region ξ
the refractive index of Eq. (1) is real for 0rrra, whereas
in region σ it changes from real to imaginary when rT¼(2|
B|/|C|)1/2. Thus the forward propagation of the ray path
inside a GLL in region σ changes from being oscillatory to
evanescent at the transition. When |C|¼2|B| for a GLL
represented by a point on line segment χ of Fig. 1, the
transition T occurs at the sphere surface and the GLL
becomes totally reflective.

In region σ the hyperbolic ray path is now

ρ02= vþuð Þa2	 

–z02= v–uð Þa2	 
¼ 1; ð36Þ

where

u¼ Bj j= Cj j ð37aÞ

v¼ Bj j2þ Cj j sin 2 θi
� �h i1=2

= Cj j; ð37bÞ

and the length of the ray path is given by Eq. (9), but with

S¼ Cj j–2 Bj j– sin 2 θi
� �h i1=2

–2u Cj j1=2arccoth v–uð Þ= vþuð Þ	 
1=2 tan θi–Θ=2
� �n o

:

ð38Þ
As a mathematical note, Eqs. (24) and (28) and Eqs. (34)
and (38) are the analytic continuation of Eqs. (5) and (10)
for Θp and S from regions η and ν into regions ξ and ψ,
and finally into region σ.

4.2. Scattered intensity

As was the case in Section 3.2, the deflection angle
function Θp(θi) cannot be analytically inverted for a hard
edge bubble-like GLL when 2BaCþ1. But for an edgeless
GLL with 2B¼Cþ1, the inversion of Θ1(θi) can be analy-
tically accomplished. On line segment ζ of Fig. 1, Eq. (29)
can be inverted to give

cos 2θi
� �¼ sin 2 Θ1

� �
– cos Θ1

� �
Cj j2– sin 2 Θ1

� �h i1=2� �
= Cj j;

ð39Þ
and the transmitted intensity is

I1 Θ1
� �¼ I0 a2=R2

� �
cos Θ1

� �þ Cj j2– sin 2 Θ1
� �h i1=2� �2

= 4 Cj j Cj j2– sin 2 Θ1
� �h i1=2� �

: ð40Þ

In the C-�1 limit, the transmitted intensity on the line
segment ζ is asymptotically given by

I1 Θ1
� �

-I0 a2=4R2
� �

; ð41Þ
which is identical to that of a perfectively reflective sphere.
Instead of the incident rays being reflected at the sphere
surface, they penetrate a short distance into the sphere, as
is shown in Fig. 8, before reversing direction at the
transition T. Although this fulfills the definition of trans-
mission since the rays cross the surface into the sphere
and then cross the surface back out again, it blurs the
formerly simple intuitive distinction between transmission
and external reflection [10]. The ray paths may be inter-
preted as exhibiting reflection which now occurs a short
distance inside the sphere rather than at its surface.

For an edgeless bubble-like GLL represented by a point
on the line segment δ of Fig. 1, the deflection angle
function may again be inverted on each supernumerary
branch to give

cos 2θi
� �¼ sin 2 Θ1

� �
7 cos Θ1

� �
Cj j2– sin 2 Θ1

� �h i1=2� �
= Cj j;

ð42Þ
where the upper and lower signs are the same as for the
angle of incidence intervals of Eq. (21). The transmitted
intensity is then

I1 Θ1
� �¼ I0 a2=R2

� �
f cos Θ1

� �
7 Cj j2– sin 2 Θ1

� �i1=2� �2

= 4 Cj j Cj j2– sin 2 Θ1
� �h i1=2� �

; ð43Þ

with the upper and lower signs being opposite to what
they were for the angle of incidence intervals of Eq. (21).
Lastly, for the special case of point ε of Fig. 1, the scattered
intensity is again given by Eq. (23), but with the intensity
being zero for �1801rΘ1r–901 and proportional to the
cosine function for �901rΘ1r01.

5. Commentary

For electromagnetic scattering by a sphere, ray theory
predicts the existence of a number of divergences or
discontinuities, either in the magnitude of the scattered
electric field, or in its derivative with respect to scattering
angle. In 1959 Ford and Wheeler [26] identified these
semi-classical effects to be the rainbow, the glory, and
orbiting. In addition, they showed how these divergences
are smoothed when the effects of wave scattering are
included. Of these, the rainbow and glory occur for
scattering by a homogeneous spherical particle, while
special properties of the refractive index profile, or equiva-
lently of the potential function in the mechanical analogy,
are required for orbiting to occur [26,27]. Since that time,
relatively few additional semi-classical effects or smooth-
ing mechanisms have been added to the list. The most
noteworthy are the Fock transition that evolves into sur-
face waves when the ray theory scattered intensity for a
spherical particle decreases to zero [15,16], and the so-
called weak caustic transition in the vicinity of the critical
angle for total external reflection for scattering by a
spherical bubble in an exterior medium of higher refrac-
tive index [31].

In this paper we examined electromagnetic scattering
by a class of radially inhomogeneous particles and bubbles
known as generalized Luneburg lenses which have the
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advantage that ray scattering can be calculated analyti-
cally. In doing so, we encountered no new, previously
unknown semi-classical scattering effects. On the other
hand, we have found several instances in which previously
known semi-classical effects appear in a very different way
than they do for the familiar situation of scattering by a
homogeneous spherical particle or bubble. For example,
appealing to the Debye series classification of scattering
processes, there can now be two or more bows per
p-channel, even including p¼1 for direct transmission.
The bows can now occur for scattering by a bubble as well
as scattering by a particle, they can be either a relative
maximum or a relative minimum of the deflection angle
and ray path, and two rainbows can be made to coalesce,
producing especially strong scattering in a given direction.
Transmission bows occur equally strongly in both the TE
and TM polarization because Brewster angle effects do not
occur in the p¼1 channel, and for edgeless GLLs the
appropriate equations are analytically invertible so that
the ray scattering intensity for a transmission bow can be
expressed directly in terms of the scattering angle Θ1

rather than indirectly in terms of the angle of incidence θi.
Lastly, for some parameters there occurs a blurring of the
intuitive distinction between exterior reflection and trans-
mission since reflection occurs just beneath the particle
surface rather than immediately at it.

As was mentioned in Section 1, scattering by a GLL
examined here in ray theory serves as a prototype system
for cataloging and understanding the wide range of
phenomena that can occur for scattering by a large class
of radially inhomogeneous spheres. These scattering phe-
nomena are further examined for a GLL in wave theory and
time domain scattering in [12].
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