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We calculated scattering of an electromagnetic plane wave by a radially inhomogeneous
particle and a radially inhomogeneous bubble when the square of the refractive index
profile is parabolic as a function of radius. Such a particle or bubble is called a generalized
Luneburg lens. A wide variety of scattering phenomena can occur, depending on the value
of the two adjustable parameters of the parabola. These phenomena, including transmis-
sion rainbows, the weak caustic for near-critical-angle scattering by a bubble, surface
orbiting, the interior orbiting paths of morphology-dependent resonances, and the
separation of diffraction are studied here using wave theory and time domain scattering.
These phenomena are also compared with their appearance or absence for scattering by a
homogeneous sphere.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is a continuation of [1] in which we analyzed
transmission scattering by a generalized Luneburg lens
(GLL) using ray theory. We here examine the most inter-
esting features of the ray theory analysis using wave
theory for plane wave incidence and time domain scatter-
ing of an incident femtosecond pulse, which produces the
scattered intensity as a function of both angle and delay
time. As was mentioned in [1] we consider the refractive
index profile of a GLL solely because every scattering
quantity is exactly soluble in ray theory. The results
described here and in [1] are not particular to a GLL, but
are expected to be valid to a large degree for a wide variety
of generically similar refractive index profiles.
).
The body of this paper is organized as follows. In Section 2,
we briefly recall the GLL geometry. In Section 3, we numeri-
cally compute the transverse electric (TE) and transverse
magnetic (TM) scattered intensity for a finely-stratified
multi-layer sphere that approximates the refractive index
profile of the GLL, using the parallel iteration method. In
Section 4 we compute time domain scattering by calculating
the scattered fields of Section 3 for each plane wave compo-
nent in the Fourier spectrum of an incident femtosecond
beam and then adding the results together. Lastly, in Section 5
we make a few final comments concerning our more unusual,
significant, and interesting results.

2. Geometry of a generalized Luneburg lens

As was the case in [1], we consider an electromagnetic
plane wave of amplitude E0, wavelength λ, wave number
k¼2π/λ, linearly polarized in the x direction, and propagating
in the þz direction in an external medium of refractive
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index 1. The plane wave is scattered by a GLL of radius a
whose center is at the origin of coordinates, and has the
radially inhomogeneous refractive index profile

N rð Þ ¼ 2B–C r=a
� �2h i1=2

; ð1Þ

where B and C are positive or negative constants. For easy
reference in this paper, the (B, C) parameter space of Eq. (1),
previously given as Fig. 1 of [1], is reproduced here as Fig. 1
as well.

The GLL is particle-like (i.e. N(r)Z1) in regions η and ψ
and on line γαβ, and it is bubble-like (i.e. N(r)r1) in
regions ν, ξ, σ and on line δεζ. When N(a)41 or N(a)o1
the particle or bubble is said to have a hard edge, and
when N(a)¼1 it is said to be edgeless. The line segment
0oBo1/2, C¼0 describes a homogeneous bubble and the
line segment B41/2, C¼0 describes a homogeneous
particle. The regions ρ1, ρ2, and ρ3 in Fig. 1 have N(r)41
for some radii inside the sphere and N(r)o1 for other
radii. These cases of mixed character will not be consid-
ered here. Similarly, a GLL in region μ, for which N(a) is
imaginary will also not be considered.

For the remainder of this paper we label the various
scattering process according to the notation for the Debye
series decomposition of the partial wave scattering ampli-
tudes for a homogeneous spherical particle [2]. The com-
bination of diffraction and external reflection is denoted by
p¼0, direct transmission is p¼1, and transmission follow-
ing p�1 internal reflections is pZ2. In [1] it was found
that the GLL can have two p¼1 rainbows (hereafter called
bows) in portions of regions η and ν, while it has one p¼1
bow on line segments γ, δ and in portions of regions ν and ψ.
Elsewhere in Fig. 1 there are no p¼1 bows.
Fig. 1. (B, C) parameter space.
3. Wave scattering

The ray theory intensity of Sections 3.2 and 4.2 of [1]
provides an underlying framework upon which the
smoothing and interference effects of wave scattering
occur. In this section we consider only those situations
for which wave scattering effects significantly depart from
their ray scattering counterparts after they have been
augmented by diffraction in the near-forward direction.
Scattering of a plane wave by a GLL was numerically
computed using the parallel iteration approach for a finely-
stratified multi-layer sphere. This numerical approach was
described fully in [3,4]. The Luneburg sphere was modeled
by 128 concentric homogeneous layers of identical thickness,
with the refractive index profile discretized to its value at the
midpoint of each of the layers. No change in the results was
observed when the GLL was decomposed into 256 or more
layers. In those situations when the GLLs were edgeless in
ray theory, the only scattering processes that occur are
diffraction and transmission. However, the multi-layer model
will not be truly edgeless due to the discretization process.
This will result in a very small amount of spurious pZ2
scattering admixed into the scattered intensity, which in
some cases served as a low-level nuisance background. In
the parallel iteration approach the four fundamental scatter-
ing amplitudes of [3] were computed for each layer, and then
adjacent pairs of amplitudes were combined to produce half
as many sets of composite amplitudes of the pairs. This
process was repeated, resulting each time in half as many
sets of composite amplitudes as in the previous iteration,
until only a single set of amplitudes for the entire sphere
remained after the final iteration. It is presumed that this
approach is less prone to round-off error (because of the
fewer number of iterations required), than in the progressive
iteration approach [5] where, starting with the innermost
layer, one layer at a time is added and the composite
amplitudes are updated, until the outermost layer of the
sphere is reached.

Numerical computations were performed for an inci-
dent wavelength of λ¼0.65 μm and an overall sphere
radius of a¼100 μm (except where explicitly noted in the
Figures), giving a size parameter of x¼2πa/λ¼966.6, which
is sufficiently large so that the underlying ray scattering
structure of the intensity should be apparent. The scatter-
ing angle is denoted by Θ, and the corresponding angle of
incidence in ray theory is denoted by θi. For an edgeless
particle-like GLL represented by a point on line segment γ
of Fig. 1, a bow is predicted in ray theory to occur when
B¼0.75, C¼0.5 at ΘR

1 ¼ 301.
The TE-polarized wave scattered intensity for this case

is shown in Fig. 2. Diffraction dominates for 01rΘr31
and the transmission bow prominently appears with its
principal maximum at ΘE28.71. This is in reasonable
agreement with the expected Airy shifted rainbow scatter-
ing angle [6] of ΘR

1 ¼ 28:571.
Fig. 2 also shows the TE scattered intensity for the hard

edge particle-like GLL with B¼0.76, C¼0.5 in region η of
Fig. 1 near line segment γ. As was mentioned in Section 3
of [1], two transmission bows are predicted to occur in
ray theory at ΘE25.361 and ΘE31.431. However, only the
broad relative maximum bow of Fig. 3 of [1] is visible at



Fig. 2. Wave theory calculations for GLLs of radius a¼100 μm for the
specified values of B and C on line segment γ and in region η of Fig. 1.

Fig. 3. Wave theory calculations for GLLs of radius a¼100 μm for the
specified values of B and C on line segment δ and in region ξ of Fig. 1.

Fig. 4. Wave theory calculations for a GLL of radius a¼100 μm with
B¼0.125 and C¼�0.25 in region ξ of Fig. 1.
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ΘE30.51, while the narrow relative minimum bow at the
lower scattering angle is not. The somewhat jagged struc-
ture deep in the supernumerary region of Fig. 2 is likely
due to p¼3 scattering. If it had been due to the second
transmission bow, the interference would only have
occurred between the two bows, and not for Θo251,
which is the case in the Figure. We believe the absence
of the second transmission bow in wave theory for this
size parameter is due to the extreme narrowness of the
impact parameter interval responsible for it. Evidence that
this is the case is provided by the fact that the finely-
stratified multi-layer sphere model was easily able to
reproduce both transmission bows for certain other care-
fully constructed monotonically decreasing refractive
index profiles when ray theory predicted that two should
occur. Yet other monotonically decreasing refractive index
profiles that contain the near-onset of orbiting were found
that predicted four transmission bows in ray theory. The
details of these calculations will be reported separately.

A transmission bow was also predicted in ray theory for
edgeless bubble-like GLLs represented by points on line
segment δ of Fig. 1, and two transmission bows were
predicted for hard edge bubble-like GLLs in region ξ near
line segment δ. The wave theory TE scattered intensity in
these two situations for B¼0.25, C¼�0.5 and B¼0.24,
C¼�0.5, respectively, is shown in Fig. 3. Again, the broad
relative minimum bow of Fig. 7 of [1] prominently appears
in both cases, while for the hard edge Luneburg sphere the
relative maximum bow having the smaller deflection angle
is absent due to the narrowness of the partial wave
interval responsible for it.

As was mentioned in Section 4a of [1], when a ray with
θi4θi

C
, where θCi is the critical angle for total external

reflection, is incident on a hard edge bubble-like GLL
represented by a point in region ξ of Fig. 1, no light is
transmitted into the sphere in ray theory. For B¼0.125,
C¼�0.25 the critical scattering angle is ΘC¼901 corre-
sponding to θCi ¼451. Partially transmitted rays contribute
to the scattered intensity for 01rΘrΘC, and their con-
tribution is smoothly extended to ΘCrΘr1801 by rapidly
damped transmitted electromagnetic surface waves
[7–10]. On the other hand, the transition from partial
external reflection for ΘCrΘr1801 to total external
reflection for 01rΘrΘC is continuous in ray theory, but
it has an infinite slope at the critical angle due to the
behavior of the Fresnel reflection coefficient there. This
results in what has been termed a weak caustic [10]. The
total scattered intensity in the vicinity of ΘC qualitatively
resembles that of a Fresnel straight edge diffraction pat-
tern [11–13] exhibiting the interference between partial
transmission and the total external reflection portion of
the weak caustic for 01rΘrΘC. For ΘCrΘr1801 the
intensity is dominated by partial external reflection, as at
first the transmission surface waves, and then the damped
external reflection portion of the weak caustic, decrease in
importance. This behavior for B¼0.125, C¼�0.25 in
region ξ is evident for both the TE and TM polarizations
in Fig. 4. It strongly resembles the effect's appearance for
scattering by a homogeneous air bubble in water [13].

A weak caustic for transmission, rather than for exter-
nal reflection, occurs for scattering by the original Lune-
burg lens with B¼1, C¼1 represented by point α in Fig. 1.
In this case the infinite discontinuity of the slope of the ray
theory electric field at ΘC¼901 is due to the [cos(Θ1)]1/2

dependence of the transmitted field arising from Eq. (23)
of [1], rather than from the Fresnel transmission coeffi-
cient, which is unity for this edgeless particle-like sphere.
The graph of the scattered intensity for this case is shown
in Fig. 5. A similar result was obtained using the



Fig. 5. Wave theory calculations for a GLL of radius a¼100 μm with B¼1
and C¼1 at point α of Fig. 1.

Fig. 6. Wave theory calculations for a GLL of radius a¼100 μm with B¼0
and C¼�1 at point ε of Fig. 1.
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progressive iteration method for a multi-layer sphere
approximation to a Luneburg lens of size parameter
x¼60 in [14]. Rays with grazing incidence orbit the surface
of the Luneburg lens at r¼a, continually shedding electro-
magnetic radiation to the far-zone and damping out at a
much slower rate than is the case for electromagnetic
surface waves [6]. This orbiting radiation dominates over
the contribution of the transmission weak caustic for
ΘCrΘr1801 producing the slow falloff of the scattered
intensity. Shed radiation from both clockwise orbiting rays
beginning at the top of the sphere and counterclockwise
orbiting rays beginning at the bottom of the sphere
produce the fine interference oscillations in this region,
and the radiation shed in all azimuthal scattering planes
constructively interferes to produce a glory enhancement
at ΘE1801. For 01rΘrΘC the scattered intensity is
dominated by the interference between the transmission
weak caustic, radiation shed by the orbiting rays, and large
angle diffraction [15].

An opportunity to observe a weak caustic unobscured
by its interference with other scattering mechanisms is
afforded by the edgeless bubble-like GLL having B¼0,
C¼�1, represented by point ε of Fig. 1. Again the trans-
mitted field in ray theory is [cos(Θ1)]1/2 arising from
Eq. (23) of [1], and the critical scattering angle is
ΘC

1¼901. However, for the original Luneburg lens, the on-
axis incident ray was transmitted at Θ1¼01, and the
transmitted angle increased with increasing impact para-
meter until Θ1¼901 for the grazing ray (see Fig. 1a of [6]).
This grazing ray contribution evolved into the transmis-
sion weak caustic along with the more dominant orbiting
ray in wave theory. But now it is the on-axis incident ray
that is transmitted at Θ1¼�901 and evolves into the
transmission weak caustic in wave theory. The magnitude
of the transmission deflection angle decreases with
increasing impact parameter until grazing incident ray
has Θ1¼01 (see Fig. 6 of [1]). The resulting TE scattered
intensity is given in Fig. 6, and exhibits the weak caustic
without competition from stronger overlapping scattering
processes.

Morphology-dependent resonances (MDRs) of a GLL
occur on line segment β and in the upper portion of region
ν where BoC. The conditions for the occurrence of an
MDR on line segment β were described in [3,16]. However
the unusual features of the ray paths of those MDRs have
not been previously discussed. By way of introduction to
these features, an MDR of a homogeneous spherical
particle in wave theory is a radial standing wave of electric
field strength localized just inside the sphere's surface.
However, a more intuitive, though less quantitatively
precise picture can be constructed in ray theory as follows
[17]. A ray with the impact parameter b4a just misses
striking the sphere. As it passes by, part of its amplitude
tunnels through the centrifugal barrier surrounding the
sphere until it gets to the surface where it is transmitted
to the interior past the critical angle for total internal
reflection. The angle of transmission into the sphere with
respect to the normal, Φ1, is obtained by applying Bouguer's
law [18] to the ray path at the radius b where the
evanescent propagation begins and at the radius r1 inside
the sphere where the propagation switches back from being
evanescent to oscillatory. One obtains

b¼ r1N r1ð Þ sin Φ1ð Þ: ð2Þ
For a homogeneous sphere where r1¼a, Eq. (2) becomes
identical to the extrapolation of Snell's law

sin θið Þ ¼ b=a¼N sin Φað Þ; ð3Þ
where sin(θi)41 for rays that classically pass the sphere by.
The interior ray then proceeds to cycle around the sphere
just beneath the surface, repeatedly undergoing total inter-
nal reflection each time the cycling ray strikes the surface.
At each strike a small amount of amplitude leaks back out
through the centrifugal barrier to the far-zone. A resonant
enhancement occurs in ray theory when the optical path
length of the interior ray is an integer number of wave-
lengths per cycle, giving constructive interference between
successive cycles. In addition, there is an infinite series of
progressively smaller wave theory corrections to this ray
prediction [19]. From this heuristic picture, one can see that
an MDR of a homogeneous sphere does not occur in any
individual Debye series term. Rather, it results from the
constructive interference of a very large number of Debye
series terms when they are added together.

In contrast, the only Debye series terms contributing to
scattering by an edgeless GLL on line segment β are p¼1
direct transmission, and the diffraction portion of p¼0.
The MDRs of a GLL on line segment β thus occur only in the



Fig. 7. Ray path of an MDR for (a) an edgeless particle-like GLL on line segment β, and (b) a hard-edge bubble-like GLL in the upper portion of region ν.
The resonance occurs entirely in the p¼1 term of the Debye series.
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p¼1 Debye series term. How can this happen, given what
one knows about the MDRs of a homogeneous sphere?
The answer lies in the details of the ray’s elliptical path
inside a Luneburg sphere when b4a. For a GLL on line
segment β with b4a, the entire elliptical path whose
semi-major axis is

r1=a¼ Cþ1þ Cþ1ð Þ2–4C b2=a2
� �h i1=2� �

=2C ð4Þ

and semi-minor axis is

r2=a¼ Cþ1– Cþ1ð Þ2–4C b2=a2
� �h i1=2� �

=2C ð5Þ

lies inside the sphere, with r1 along the ρ axis and r2 along
the z axis as defined in [1]. This is illustrated in Fig. 7a.

As was the case for a homogeneous sphere, part of the
amplitude of a passing ray with b4a tunnels along the ρ
axis through the centrifugal barrier surrounding the
sphere until it gets to r1 inside the sphere, where it is
converted to an oscillatory ray with Φ1¼901, consistent
with Eq. (2). Since r1oa in this case, Eq. (2) is not identical
to Snell's law. The interior ray then repeatedly cycles around
on the elliptical ray path, producing a quasi-bound state of
light inside the sphere. Each time the cycling ray crosses the
7ρ axes at r1, part of the amplitude tunnels back out along
the 7ρ axis giving a contribution to the scattered light in
the vicinity of Θ¼01 and Θ¼1801, whereas an MDR of a
homogeneous sphere emits radiation in all directions. This
emission of scattered radiation gives a finite lifetime to the
quasi-bound state. In the ray theory picture, an MDR should
occur when contributions at these angles from successive
interior cycles are in phase with each other. In [3] it was
seen that the quality factor of these resonances was
relatively low, thus producing a relatively leaky but highly
directional source of scattered radiation. Since the ray in
question is transmitted into and out of the Luneburg sphere
with no intermediate internal reflections at the sphere
surface, the entire MDR is contained in the p¼1 term of
the Debye series, thus resolving the paradox posed above.

The ray theory explanation of MDRs in the upper
portion of region ν for a hard-edge bubble-like GLL is
similar. When a ray is incident on the sphere past the
critical angle for total external reflection θi4θCi as in
Fig. 7b, the path of an interior ray is again an ellipse lying
entirely inside the GLL having semi-major axis

r1=a¼ Bþ B2–C sin 2 θið Þ
h i1=2� �

=C ð6Þ

and semi-minor axis

r2=a¼ B� B2–C sin 2 θið Þ
h i1=2� �

=C: ð7Þ

The semi-major axis coincides with the ρ' axis, which is
rotated with respect to the ρ axis of [1] by θi, and the semi-
minor axis coincides with the z' axis. Part of the amplitude
of a ray striking the surface of the bubble-like GLL with
θi4θCi tunnels along the ρ' axis through the classically
forbidden portion of the sphere until it gets to the interior
point r1 where it is converted to an oscillatory ray that
repeatedly cycles around on the interior elliptical ray path,
again producing a quasi-bound state of light inside the
sphere. In analogy to the phenomenon of frustrated total
internal reflection that occurs when the interfaces are flat
[20], the phenomenon described here can be termed
frustrated total external reflection. A similar effect, but
obtained when a sphere is coated with a material having
imaginary refractive index, was proposed in [21]. Each
time the interior ray crosses the 7ρ' axes, part of the
amplitude tunnels back out along the 7ρ' axis giving a
contribution to the scattered light in the vicinity of Θ¼2θi
and Θ¼2θi�1801, again giving a finite lifetime to the
quasi-bound state. This MDR also occurs solely in the
p¼1 term of the Debye series. Finally, one should recall
that in wave theory, as was the case for a homogeneous
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sphere, the MDRs of a Luneburg sphere are a radial standing
wave just inside the sphere surface.

The optical path length of the interior ellipse in both
the upper portion of region ν and on line segment β is
found to be

S¼ 2πaB= C1=2
� �

: ð8Þ

Since Eq. (8) is independent of sin(θi), a purely ray picture
of the MDR, without any wave theory input, is unable to
predict the resonant size parameter karesonant of a parti-
cular partial wave n when the localization principle [22]

sin θið Þ � n nþ1ð Þ½ �1=2=ka� nþ½ð Þ=ka ð9Þ
is made. Instead, one uses the wave theory argument of
[16], namely in the mechanical analogy of scattering by a
sphere [23], the effective potential

V rð Þ ¼ 1–N2 rð Þþn nþ1ð Þ= krð Þ2 ð10Þ
is nearly parabolic as a function of r inside the GLL in the
MDR region, thus permitting oscillatory waves inside the
parabola. This nearly parabolic effective potential supports
a spectrum of approximately harmonic oscillator bound
states [24] parameterized by the integer s¼0, 1, 2, …,.
As was discussed in [16], an approximation to the resonant
size parameter of an MDR is given when the energy of one
of these harmonic oscillator bound states is equal to the
effective energy of an incoming partial wave. For the GLL
refractive index of Eq. (1), this occurs when

karesonant � 2sþnþ3=2
� �ðC1=2Þ=B; ð11Þ

or

2πaresonantB= C1=2
� �

� 2sþnþ1þ1
2

� �
λ: ð12Þ

Since the left hand side of Eq. (12) is the optical length of
one cycle of the interior elliptical path of Eq. (8), the extra
factor of λ/2 on the right hand side of Eq. (12) is a wave
theory correction arising from the harmonic oscillator
zero-point energy to the ray theory integer-number-of-
wavelengths prediction, given by (2sþnþ1)λ. The physical
origin of the wave correction is at present not known.

The approximation of Eq. (11) with s¼0 was found in
[3] to be quite accurate when applied to the MDRs of a GLL
on line segment β. Two possible corrections to Eq. (12)
arise from the fact that (i) the effective potential inside the
GLL is not exactly parabolic, and (ii) the effective potential
extends only out to r1, and not all the way out to infinity.
We tested possibility (i) by Taylor series expanding the
potential about its minimum, keeping the quadratic and
cubic terms, and then calculating the anharmonic oscilla-
tor correction to the bound state energies on line segment
β using second order perturbation theory, as is standardly
done in quantum mechanics [25]. The correction turned
out to be an order of magnitude too small, and was in the
correct direction for some resonances but was in the
opposite direction for others. We thus feel possibility (ii)
holds more promise for improving the theoretical estimate
of Eq. (12). Resonances were also examined for B¼0.495,
C¼0.7 in the upper portion of region ν in the interval
60rkar80. A sequence of eleven nearly evenly-spaced,
but distorted, resonance profiles having a relatively low
quality factor was found in the interval. Their spacing was
ΔkaresonantE1.93, whereas Eq. (12) with s¼0 predicts
Δkaresonant¼1.69. The theoretical prediction is the correct
order of magnitude, which is about all that can be
expected given the distorted shape of the computed
resonance profiles. The reason for the distortion is not
known, but it may possibly be due to the simultaneous
presence of a sequence of broader s¼1 resonances, as was
the case in [3].

As a final note, in Section 4 of [1], it was mentioned that
on line segment ζ and in region σ of Fig. 1, the refractive
index changes from real to imaginary inside the GLL at the
transition T, causing the forward propagating interior
wave to change from being oscillatory to evanescent. In
order to adapt this situation to wave theory, the four
fundamental scattering amplitudes of the progressive itera-
tion approach must be written at the transition layer in
terms of modified Riccati–Bessel functions rather than in
terms of the usual Riccati–Bessel functions. This has not
been implemented as of yet, and remains a topic for future
research.

4. Time domain scattering

It is frequently of interest to assess the contribution of
an individual scattering process in situations where many
scattering processes occur simultaneously. This is handled
naturally in ray theory [26], but in wave theory it is more
difficult to accomplish because of the nature of the Mie
sum over partial wave scattering amplitudes. There are
two approaches to the separation problem in wave theory.
First, one can expand the partial wave scattering ampli-
tudes in terms of the Debye series and then examine each
Debye term individually [2,7,8]. Second, one can perform a
time domain analysis of the total fields scattered in each
direction when a short pulse is incident on the sphere.
Light waves taking relatively short paths through the
particle exit the sphere earlier and are typically due to
certain physical processes, while those taking relatively
long paths exit the sphere later and are typically due to
other processes. This procedure effectively performs a
Debye series decomposition of the total wave theory
scattered intensity by reading the interference structure
between two or more different p-value processes occur-
ring at the same scattering angle, without having to
explicitly evaluate the various Debye terms.

A Gaussian plane wave pulse

Epulse z; tð Þ ¼ E0exp � z�ctð Þ2=σ2
h i

exp ik0 z�ctð Þ� 	
ux ð13Þ

with dominant wavelength λ0¼0.65 μm, electric field
1/e full-width 5 fs and σ¼0.75 μmwas Fourier decomposed
into its component plane waves. Electromagnetic scattering
from each component was computed using the parallel
iteration approach for a finely-stratified multi-layer sphere.
The scattered fields, weighted by their Fourier amplitude,
were then added together to produce the total scattered
wave as a function of time. The scattered intensity of the
resulting time domain graphs was plotted in false color
as a function of the delay time and scattering angle. This
procedure is described in more detail in [9,15,27].
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Fig. 8a and b shows time domain graphs for the edge-
less particle-like GLL with B¼0.75, C¼0.5 on line segment
γ in Fig. 1 and the edgeless bubble-like GLL with B¼0.25,
C¼�0.5 on line segment δ, respectively. The inverted-V
structure at the top of the graphs centered at (Δt, Θ)¼
(665 fs, 01) is the signature of diffraction [15]. The much
larger skewed V-like structure beneath it is the signature
of transmission. The ray theory prediction of Eqs. (9–12,
28, 29) of [1] is overlaid on the graph, and the impact
parameter is denoted for a number of incident rays. In
Fig. 8a the cusp point of the large V-like structure is
skewed to the right, illustrating the relative maximum
of both the scattering angle and the delay time at the
particle-like transmission bow. Similarly in Fig. 8b the cusp
point of the large V-like structure is skewed to the left,
illustrating the relative minimum of both the scattering
angle and the delay time for the bubble-like transmission
bow. Time domain graphs for B¼0.76, C¼0.5 in region η of
Fig. 1 and for B¼0.24, C¼�0.5 in region ξ where two
transmission bows are predicted in ray theory were com-
puted but are not shown here. They were found to be
virtually identical to Fig. 8a, and b. In particular, the location
of the second bow in the time domain graphs lies directly
underneath the dominant p¼1 trajectory, and is thus not
evident in time domain scattering. Had it been offset from
the dominant trajectory, as is the case for certain other
refractive index profiles which will be reported separately,
the second transmission bowwould have made its presence
known unambiguously.
Fig. 8. Time domain diagram for GLLs of radius a¼100 μmwith (a) B¼0.75, C¼0
Fig. 9 illustrates time domain scattering by the hard
edge bubble-like GLL with B¼0.125, C¼�0.25 in region ξ
of Fig. 1. The contributions of the various Debye scattering
processes are labeled for 0rpr4. The inverted-V signa-
ture of diffraction is centered at (500 fs, 01), and the p¼0
external reflection signature merges smoothly onto its
smaller time-delay arm. The location of the on-axis ray
for p¼1, 2, 3 is (385 fs, 01), (770 fs, 1801), and (1155 fs, 01)
respectively. All these time domain trajectories merge at
the total external reflection accumulation point [10]
located at (195 fs, 901). A qualitatively similar time domain
graph for scattering by an air bubble in water is illustrated
in [28].

In Section 3 of [1] the slow falloff of the scattered
intensity for Θ4901 for the original Luneburg lens with
B¼1, C¼1 represented by point α in Fig. 1 was attributed
to radiation shed by the ray with grazing incidence as it
was captured by the Luneburg lens and proceeded to orbit
around the sphere at its surface. This orbiting interpreta-
tion is supported by the time domain scattering plot of
Fig. 10 where the p¼1 scattering signature continues for
more than a full cycle of orbiting, containing the points
(181 fs, 1801) for a half cycle, (276 fs, 01) for a full cycle, and
(381 fs, 1801) for 1.5 cycles.

Some years ago a large monetary prize was informally
and semi-jokingly offered for a demonstration of how
diffraction could be fully separated off from all the
other Debye series scattering processes [29]. It had been
demonstrated long ago [7] that such a separation is
.5 on line segment γ and (b) B¼0.25, C¼�0.5 on line segment δ of Fig. 1.



Fig. 10. Time domain diagram for GLL of radius a¼10 μm with B¼1 and
C¼1 at point α in Fig. 1.

Fig. 9. Time domain diagram for a GLL of radius a¼100 μm with
B¼0.125, C¼�0.25 in region ξ of Fig. 1 showing contributions from the
Debye terms p¼0 through p¼4.

P. Laven et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 162 (2015) 164–174 171
impossible for scattering of a plane wave by a homoge-
neous sphere because diffraction had to be combined with
external reflection for partial waves n in the regime
n42πa/λ in order to obtain convergence of the Mie partial
wave sum. This impossibility was later verified in time
domain scattering of a plane wave by a homogeneous
sphere [27] because the time domain trajectory of the
grazing incidence external reflection ray healed smoothly
onto the smaller delay time arm of the inverted-V struc-
ture of diffraction, thus preventing a clean separation of
the two processes. External reflection, however, does not
occur for scattering at the surface of an edgeless Luneburg
sphere. But again a separation is not possible in Fig. 8a
where grazing incidence transmission of an edgeless
particle-like GLL maps smoothly onto the larger delay
time arm of the diffraction signature. Similarly, in Fig. 8b
for an edgeless bubble-like GLL it maps smoothly onto the
smaller delay time arm. In Fig. 10 for the edgeless original
Luneburg lens, although small angle transmission is sepa-
rated in the time domain from small angle diffraction,
diffraction at larger angles maps smoothly onto transmis-
sion, again preventing the full separation.

Fig. 11, however, shows time domain scattering of an
edgeless particle-like GLL with B¼2, C¼3 on line segment
β in Fig. 1. The longer delay time arm of the inverted-V
structure of diffraction is given by

Δt ¼ a 2þΘð Þ=c; ð14Þ

which for a¼20 μm gives Δt¼133 fs when Θ¼01 and grows
linearly due to large angle diffraction [15] to Δt¼342 fs
when Θ¼1801. On the other hand, Eqs. (9)–(11) of [1] show
Fig. 11. Time domain diagram for a GLL of radius a¼20 μm with B¼2,
C¼3 on line segment β of Fig. 1 showing complete separation between
the Debye p¼0 and p¼1 terms.



Fig. 12. (a) Fold caustic (large dot) and the scattering angle Θ1 axis. The
number of participating rays for each scattering angle is listed, and the
shaded region indicates the supernumerary interference pattern. (b) Cusp
caustic and the Θ1 and B axes. The number of participating rays for each
scattering angle is listed, and the shaded region indicates the super-
numerary interference pattern. When B¼B1, two bows occur at different
values of Θ1. When B¼B2, the two bows coalesce at a single value of Θ1.
When B¼B3, no bows occur.
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that transmission begins at Δt¼228 fs when Θ¼01 and
grows to Δt¼375 fs when Θ¼1801. The orbiting nature of
diffraction [15] continues that physical process to yet larger
scattering angles, while electromagnetic surface waves
similarly continue the transmission process [9]. As a result
these two time domain trajectories continue parallel to each
other for large Δt, and when confined to the scattering
angle interval 01rΘr1801 occasionally cross each other
with slopes of opposite sign. Fig. 11 clearly shows that
diffraction has been completely separated from all other
scattering processes in the time domain for this physical
system.

However, as is the case for all materials, the refractive
index of a real Luneburg sphere will depend on wave-
length. This effect will both broaden and shift the trans-
mission trajectory of Fig. 11 in the time domain. The
broadening will be most important for a relatively short
pulse containing a wide spectrum of wavelengths. One
may ask whether the time domain diffraction signature in
Fig. 11 will still be separated from the dispersion-broadened
transmission signature when these effects are accounted
for. In order to address this question, since our 5 fs full-
width Gaussian pulse has a central wavelength of
λ0¼0.65 μm, the power spectrum 1/e2 points correspond
to λ-¼0.509 μm and λþ¼0.898 μm. Since an optical fre-
quency Luneburg sphere has yet to be fabricated, we are
forced to guess at a possible wavelength dependence for N
(r, λ) with the constraint that N(a, λ)¼1 for all wavelengths
to ensure that the GLL remains edgeless. We fit the real part
of the refractive index of water [30] and borosilicate crown
glass [31] in the visible region by the Cauchy formula, and
averaged the dispersion coefficients for the two cases to get
an order of magnitude estimate for a hypothetical N(0, λ).
We then parameterized N(r, λ) by

N r; λð Þ ¼ 2B0–C0 r=a
� �2h i1=2

ð15Þ

as in Eq. (1) with the Cauchy fit of B' being

B0 ¼ B 0:991789þ0:035=λ2–0:000013=λ4
� �2

; ð16Þ
which gives the dispersion of N(0, λ) being intermediate
between that of water and glass, and

C 0 ¼ 2B0 �1 ð17Þ
in order to guarantee that N(a, λ)¼1 for all wavelengths.
Using B¼2, and the wavelength interval λ�rλrλþ we
found that the transmission signature in Fig. 11 is widened
by only about 1.7 fs, preserving the separation between the
diffraction and transmission signals. We also investigated a
second parameterization of dispersion that is not con-
strained by N(a, λ)¼1. The broadening of the transmission
signal was found to be virtually identical to that of
Eqs. (15–17). In addition, the group velocity of the pulse is

vg¼ c=n
� �

1þ λ0=n0
� �

dn=dλ
� �� 	

; ð18Þ
which differs from c/n by only 1% and 2% for the dispersion
of water and glass, respectively. This produces a corre-
sponding small shift in the time-domain trajectory, thus
claiming the imaginary prize offered in [29]. It should be
noted that the fact that the broadening of the transmission
signature turns out to be small provides a justification of
our hypothetical numerical estimate of dispersion in
Eq. (16). This amount of broadening is applicable to the
time domain plots of Figs. 8–10 as well.
5. Outlook

Although both in this paper and in [1] we limited
ourselves to scattering by a generalized Luneburg lens,
we believe the scattering phenomena we have uncovered
here should be characteristic of the phenomena that occur
for a large variety of radially inhomogeneous spheres with
a generically similar refractive index profile. Although we
limited ourselves to p¼1 transmission scattering in the
context of ray theory in [1], we also believe the large
variety of bow occurrences we uncovered, and which were
confirmed via wave scattering and time domain scattering
in this paper, should again be characteristic of their
occurrences for pZ2. For example, since the ray path
inside a Luneburg sphere between interactions with the
surface is always a segment of an ellipse or a hyperbola
one can expect that there could easily be three or more
bows in a given p-channel for pZ2.

On line segments γ, δ and in portions of regions ν, ψ of
Fig. 1 where only a single p¼1 bow occurs, the overall
caustic structure organizing the bow is the morphology of
the fold caustic of catastrophe theory [32,33], where the
single control variable is the scattering angle Θ1. This
means that by changing the value of Θ1 one can change
the number of rays contributing to the scattered intensity
from zero to two, or from two to zero. This is pictorially
illustrated in Fig. 12a which is based on Fig. 3a of [32]
adapted to the Luneburg geometry. The parameter B of the
GLL refractive index (along with the parameter C with
C¼2B�1 on line segments γ, δ) is not an independent
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control variable since it does not change the overall caustic
structure of two contributing rays changing to zero rays, or
zero rays changing to two rays. It merely varies the
scattering angle of the bow according to θRi ¼arcsin(B)
and ΘR

1¼arcsin(7 |C|) if C40 or Co0. The bow of line
segment γ for an edgeless particle-like GLL plus that of line
segment δ for an edgeless bubble-like GLL span the full
extent of the single organizing fold caustic. For 0oBo0.5
on line segment δ, the bow occurs at 01rθRi r451 and
�901rΘR

1r01, and along line segment γ, it occurs at
451rθRi r901 and 01rΘR

1r901. The ΘR
1¼01 center point

occurs when B¼0.5, C¼0, for which the sphere is absent
and no scattering occurs. The ΘR

1¼901 limit of point α in
Fig. 1 evolves into the weak caustic plus the orbiting ray of
the original Luneburg lens, which is shown in the ray
tracing graph of Fig. 1a of [6], the wave scattering graph of
Fig. 5, and the time domain scattering graph of Fig. 9.
Similarly, the Θ1

R¼�901 limit of point ε evolves into the
singular ray trajectory shown in Fig. 6 of [1], and the wave
theory weak caustic graph of Fig. 6.

In regions η, ξ, νwhere there are either two or zero p¼1
bows depending on the value of B and C, the bows are
organized by the morphology of the cusp caustic of
catastrophe theory [32,33] where the two control variables
are the scattering angle Θ1 and either B or C. This is
pictorially illustrated in Fig. 12b which is based on Fig. 3b
of [32] adapted to the Luneburg geometry. Depending on
the value of the second control variable, the organizing cusp
caustic is intersected either twice or zero times by the Θ1

axis, giving either the two or zero observed bows and one
or three contributing rays. The intersection of the Θ1 axis
with the cusp point corresponds to the coalescence of the
two p¼1 bows which was seen in [1] to occur in region η,
for example, at B¼0.773 when C¼0.5. If the second control
variable is taken as B, then C is not an additional control
variable, since it only serves to vary the scattering angle of
the two bows, but does not change the overall caustic
structure.

By way of comparison, when the shape of the scattering
particle rather than its refractive index is generalized, the
bow evolves into a cross section through either a hyper-
bolic umbilic caustic or a symbolic umbilic caustic, classi-
fied as Dþ

4 and E6, respectively, in [34–37]. This is due to
the breaking of the previous spherical symmetry of the
particle. Because of this symmetry loss, rays remaining in a
single plane during their passage through the particle as
well as skew rays whose scattering plane changes at each
interaction with the particle surface participate in these
higher order caustics. A similar but more complicated
symmetry breaking effect occurs for glory scattering of a
spheroidal particle or bubble [38,39].

In addition to the wide variety of bow appearances,
p¼1 scattering by a GLL provides a new perspective on a
number of other semi-classical scattering phenomena. As
was shown in Fig. 6, the weak caustic transition can now
be seen more clearly, rather than being partially obscured
by its interference with other, often larger scattering
processes. As was shown in Fig. 11, diffraction can be
completely separated in the time domain from all other
scattering processes for a certain subset of the GLLs, and as
was shown in Fig. 10, the effects of orbiting for scattering
by the original Luneburg lens become quite evident in the
time domain. Morphology-dependent resonances occur
not only for particle-like GLLs when the incident ray just
misses striking the sphere, but also for bubble-like GLLs
when the incident ray is just past the critical angle for total
external reflection. In both cases the resonant ray path is
an ellipse lying entirely within the GLL. Additional work on
scattering by a GLL remains, however. Specifically, the
behavior of the interior wave when the refractive index
changes from real to imaginary on line segment ζ and in
region σ has not yet been quantitatively studied in wave
theory.

In spite of all the details that are now understood
concerning electromagnetic scattering by the simplest of
all particles, a single sphere, it is exciting to see that when
the refractive index profile is generalized from C¼0 for a
homogeneous particle or bubble to Ca0 for a GLL, a large
number of novel and surprising phenomena occur. The
extent to which this symmetry breaking adds additional
richness to p¼1 scattering has been seen here to be quite
impressive. This richness is the hallmark of an important
and deeply significant physical system that merits con-
tinuing study.
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