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Abstract 

In static and dynamic light scattering, it has frequently been claimed that cross-polarized scattering cannot occur for 

single-scattering by a homogeneous spherical particle.  Although this is true for both plane wave and on-axis 

Gaussian beam incidence, we show that cross-polarized scattering does occur when the beam is translated off-axis 

incidence perpendicular to the scattering plane.  We find that the existence of cross-polarized scattering is a direct 

result of the breaking of the circular symmetry of the beam with respect to the center of the particle when the beam 

is translated off-axis in wave theory, and to the constraint of the incident beam being a solution of Maxwell’s 

equations.  
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1. Introduction 

In static and dynamic light scattering experiments, a large number of scattering particles are suspended in a liquid-

filled sample cell and are illuminated by an incident beam traveling in the horizontal +z direction.  The scattering 

plane is taken to be the horizontal yz plane of a Cartesian coordinate system, and the x axis is vertical.  The beam is 

linearly polarized either perpendicular to the horizontal scattering plane (i.e. vertically or V) or in the scattering plane 

(i.e. horizontally or H) [1-3].  Light scattered by the particles passes through a polarizer oriented either vertically (V) 

or horizontally (H) before being recorded by a detector, as is shown in Fig. 1.  In the context of static and dynamic 

light scattering, it is frequently claimed that if the scattering particles are homogeneous spheres and only single-

scattering occurs in the sample cell, then co-polarized VV and HH scattering is observed, but cross-polarized VH and 

HV scattering cannot occur.  If VH or HV scattering is experimentally detected under such conditions, it is commonly 

taken to be a sign that the scattering particles are either (i) anisotropic [1], (ii) non-spherical [4,5], or (iii) that the 

number density of particles in the sample cell is sufficiently large so that multiple scattering is occurring [6].  

The reason for this claim is understandable.  The polarization state of light scattered by a target particle is 

connected to the polarization state of a plane wave incident on it by the 2×2 scattering amplitude matrix [S] (see p.34 

of [7], Eq.(3.12) of [8], and Eq.(2.30) of [9]).  The four elements of [S] describe VV, VH, HV, and HH scattering.  It 

has long been known that if the target particle is a homogeneous sphere and an incident plane wave propagates in the 

z direction toward the target, then the scattering amplitude matrix is diagonal, i.e. SVH=SHV=0, and only co-polarized 

scattering occurs (see p.56 of [3]).  Since the macromolecules or small particles frequently studied in dynamic light 

scattering experiments are sub-micron in size, the phase fronts of an incident beam are nearly flat across their 

diameter.  As a result, plane wave incidence is a good approximation to this situation, even if the incident fields are 

those of a moderately focused laser beam.  But since the fields of a transversely focused beam can be expanded as an 

angular spectrum of plane waves (see Sec.3.7 of [10] and [11]), and each diagonally incident component wave in the 

spectrum gives rise to a nonzero SVH and SHV (see Eqs.(5.145)-(5.148) of [9]), it is sensible to conjecture that cross-

polarized scattering should be able to occur, and might possibly be experimentally detectable under very favorable 

conditions.  The purpose of this study is to consider the case of a transversely focused beam incident on a single 

homogeneous spherical particle, and the conditions under which cross-polarized scattering occurs. 
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Fig. 1:  Geometry of VV, VH, HV, and HH scattering. 

 

The body of this study proceeds as follows.  In Section 2 the generalized Lorenz-Mie theory (GLMT) formulas for 

scattering of an arbitrary transversely focused beam by a spherical particle are reviewed.  The incident beam is then 

taken to be the localized model of a focused Gaussian beam that is polarized at the center of its focal waist either in 

the scattering plane or perpendicular to it.  In Section 3, a numerical example is then presented which exhibits both 

co-polarized and cross-polarized scattering for off-axis incidence of the beam with respect to the target particle.  In 

Section 4 the existence of non-zero cross-polarized scattering is seen to be a wave theory effect due to the breaking of 

circular symmetry of the beam with respect to the particle when the beam is translated off-axis, and to the fact that the 

off-axis beam fields are a solution to Maxwell’s equations.  As is seen in Sec.2, the GLMT formulas for the scattering 

amplitudes for off-axis beam incidence contain sums over both partial waves and azimuthal modes.  In Part 2 of this 

study [12] the GLMT angular functions are accurately approximated for large partial waves.  This allows the sum 

over azimuthal modes to be evaluated analytically, leaving only the sum over partial waves to be evaluated 

numerically, as is also the case for Lorenz-Mie scattering of a plane wave.  

2. Off-Axis Scattering by the Localized Model of a Focused Gaussian Beam 

2a.  Generalized Lorenz-Mie Theory 

Scattering of an incident monochromatic transversely focused beam of nominal electric field strength E0, 

wavelength λ, wave number k=2π/λ, and angular frequency ω by a homogeneous spherical particle of radius a and 

refractive index M is calculated here using the GLMT formalism.  The r→∞ far-zone scattered electric and magnetic 

fields are 
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Escatt(r,θ,φ)  = (iE0/kr) exp(ikr) [S2(θ,φ) uθ - S1(θ,φ) uφ]                                                 (1a)  

Bscatt(r,θ,φ) = (iE0/ckr) exp(ikr) [S1(θ,φ) uθ + S2(θ,φ) uφ]  ,                                            (1b) 

where φ is the azimuthal angle with respect to the xz plane, θ is the scattering angle, c is the speed of light, and the 

time dependence exp(-iωt) has been left implicit.  The horizontal scattering plane considered in the numerical 

example of Sec. 3 is φ=±90°.  If one considers scattering in a plane corresponding to a fixed value of φ, then ur and 

uθ are orthogonal unit vectors in that plane, and uφ is the unit vector perpendicular to that plane.   In the notation of 

[13,14], (but with Anm
± and Bnm

± defined in Eqs.(3a),(3b) below rather than by Eq.(48) of [13]),  the scattering 

amplitudes are 

                ∞ 

S1(θ,φ) = ∑ cn {(1/2) Bn
0
 bn τn

0(θ) 

               n=1 

                n  

            + ∑ [Bnm
+ bn τn

m(θ) cos(mφ) + i Bnm
-  

bn τn
m(θ) sin(mφ) 

              m=1 

                   + Anm
+ 

an mπn
m(θ) sin(mφ) – i Anm

- an mπn
m(θ) cos(mφ)]}  ,                        (2a) 

                ∞           

S2(θ,φ) = ∑ cn {(1/2) An
0
 an τn

0(θ)  

               
n=1                    

          n 

      + ∑ [Anm
+ an τn

m(θ) cos(mφ) + i Anm
- an τn

m(θ) sin(mφ)   

        
m=1 

              - Bnm
+ bn mπn

m(θ) sin(mφ) + i Bnm
- bn mπn

m(θ) cos(mφ)]}  .                              (2b)  

where 

Anm
± ≡ (1/2) (An

m ± An
-m) for 1 ≤ m ≤ n                                                                           (3a) 

Bnm
± ≡ (1/2) (Bn

m ± Bn
-m) for 1 ≤ m ≤ n    .                                                                      (3b) 

The quantities An
m, Bn

m are the beam shape coefficients of the incident beam for partial wave numbers 1 ≤ n <∞ and 

azimuthal modes –n ≤ m ≤ n.  If the radial component of the incident electric and magnetic fields is exactly known, 

the beam shape coefficients may be obtained from [13,14]  

An
m = [(-i)n-1/2π] [kr/jn(kr)] [(n-|m|)!/(n+|m|)!] 

            π                2π 

         × ∫ sin(θ) dθ ∫ dφ Pn
|m|[cos(θ)] exp(-imφ) Einc

rad(r,θ,φ)                                             (4a) 

            0                0 

Bn
m =  [(-i)n-1/2π] [kr/jn(kr)] [(n-|m|)!/(n+|m|)!] 

             π               2π 

         × ∫ sin(θ) dθ ∫ dφ Pn
|m|[cos(θ)] exp(-imφ) cBinc

rad(r,θ,φ)  ,                                        (4b) 

            0               0 

where jn(kr) is a spherical Bessel function.  If Einc
rad(r,θ,φ) and Binc

rad(r,θ,φ) are the radial field components of an 

exact solution of Maxwell’s equations, the integrals over θ and φ will exactly cancel the [kr/jn(kr)] term, and produce 

coordinate-independent values of An
m and Bn

m.  The beam shape coefficients for n,m and n,-m in Eqs.(2a),(2b) have 

been combined as Eqs.(3a),(3b) in order to take advantage of certain simplifications that analytically and 

numerically occur when summing over only non-negative values of m.   
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      In Eqs.(2a),(2b), the transverse magnetic (TM) and transverse electric (TE) partial wave scattering amplitudes of 

Lorenz-Mie theory are an, bn, respectively (see p.123 of [7] and Eqs.(4.56),(4.57) of [8]), and the GLMT angular 

functions are 

mπn
m(θ) = [m/sin(θ)] Pn

m[cos(θ)]                                                                                    (5a)  

τn
m(θ) = dPn

m[cos(θ)] / dθ  ,                                                                                              (5b) 

where Pn
m[cos(θ)] are associated Legendre functions as defined in Eqs.(12.81),(12.81a) of [15].  The Lorenz-Mie 

partial wave weighting coefficient in Eqs.(2a),(2b) is 

cn = (2n+1)/[n(n+1)]  .                                                                                                        (6) 

It should be noted that another notation for the beam shape coefficients uses gn
m

TM rather than An
m and gn

m
TE rather 

than Bn
m [16,17].  Correcting for the different conventions for the time dependence of the fields, the spherical Hankel 

functions used [18], and the different scaling factor of the associated Legendre functions, one has An
m = 2gn

m
TM and 

Bn
m=2gn

m
TE. 

2b. Localized Model Beam Shape Coefficients and Scattering Amplitudes 

    The calculations reported here use the localized model of an off-axis focused Gaussian beam propagating in the 

+z direction and linearly polarized in the x direction at the center of its focal waist.  After preliminary partial reports, 

the shape coefficients of this beam type were first fully published in [19].  A simplified form for them was obtained in 

[14], they were related to Davis beams in [20], and they were derived using angular spectrum of plane waves method 

in [11,21].  Useful reviews of the localized beam model are given in [22,23].  A localized beam is by definition an 

exact solution of Maxwell’s equations since its beam shape coefficients are constants, and its electric field profile has 

been found to be very nearly Gaussian as long as the beam width at the center of its focal waist is more than a few 

wavelengths [19,24-29].  It has been found that as this exact beam is progressively translated off-axis on the φ0 

direction, a very weak secondary Gaussian peak starts to form that is translated equally far in the φ0+180° direction.  

This secondary peak is sufficiently weak that it should not affect the numerical results obtained in Sec.3 [19,26-29].   

The localized beam is parameterized by the confinement parameter 

 

s = λ/(2πw0)  ,                                                                                                                         (7)  

 

where w0 is the electric field half-width of the beam at the center of its focal waist.  For the calculations described 

here, the beam is focused on the scattering particle, rather than upstream or downstream from it.  The center of the 

scattering particle coincides with the origin of the transverse plane containing the center of the beam’s focal waist at 

the point (ρ0,φ0) given in polar coordinates.  When ρ0=0, the beam is said to be on-axis with respect to the particle, 

and when ρ0≠0, it is said to be off-axis.  The angle φ0 describes the direction in which the beam is translated off-axis 

and is not to be confused with the orientation of the scattering plane which is parameterized by the azimuthal angle 

φ.  If the electric field of an incident focused Gaussian beam is polarized in the ux direction at the center of the focal 

waist, the localized model beam shape coefficients in the notation of [13,14], are  

Anm
+(ρ0,φ0) = i Fn (n+1/2) [- i/(n+1/2)]m  

            × {Im-1(Qn) cos[(m-1)φ0] + Im+1(Qn)  cos[(m+1)φ0]}                                        (8a) 

Anm
-(ρ0,φ0) = Fn (n+1/2) [- i/(n+1/2)]m  

             × {Im-1(Qn)  sin[(m-1)φ0] + Im+1(Qn)  sin[(m+1)φ0]}                                        (8b) 

An
0(ρ0,φ0) = 2i Fn (n+1/2) I1(Qn) cos(φ0)                                                                     (8c) 

and 
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Bnm
+(ρ0,φ0) = -i Fn (n+1/2) [- i/(n+1/2)]m  

             × {Im-1(Qn)  sin[(m-1)φ0] - Im+1(Qn)  sin[(m+1)φ0]}                                          (9a)    

Bnm
-(ρ0,φ0) = Fn (n+1/2) [- i/(n+1/2)]m  

               × {Im-1(Qn)  cos[(m-1)φ0] - Im+1(Qn)  cos[(m+1)φ0]}                                        (9b) 

Bn
0(ρ0,φ0) = 2i Fn (n+1/2) I1(Qn) sin(φ0)  ,                                                                     (9c) 

where 

Fn ≡ exp(-ρ0
2/w0

2) exp[-s2 (n+1/2)2]                                                                              (10) 

Qn ≡ (2sρ0/w0) (n+1/2)  ,                                                                                                (11) 

and Im(Qn) is a modified Bessel function.  In the limit ρ0→0 and Qn→0, one obtains Fn →exp[-s2(n+1/2)2], which is 

proportional to the m=±1 beam shape coefficients of an on-axis focused Gaussian beam ([24,25,30,31] and Eq.(VII.7) 

of [17]).  In the limit s→0 and Qn→0, one obtains Fn→1, which is proportional to the m=±1 beam shape coefficients 

of a plane wave (see Eqs.(VI.78),(VI.79) of [17]).   

If the electric field at the center of the focal waist is instead polarized in the uy direction, using the angular 

spectrum of plane waves procedure outlined in [21], we found that the beam shape coefficients are 

Anm
+(ρ0,φ0) = -i Fn (n+1/2) [- i/(n+1/2)]m  

         × {Im-1(Qn) sin[(m-1)φ0] - Im+1(Qn)  sin[(m+1)φ0]}                                               (12a) 

Anm
-(ρ0,φ0) = Fn (n+1/2) [- i/(n+1/2)]m  

         × {Im-1(Qn)  cos[(m-1)φ0] - Im+1(Qn)  cos[(m+1)φ0]}                                             (12b) 

An
0(ρ0,φ0) = 2i Fn (n+1/2) I1(Qn) sin(φ0)                                                                       (12c) 

and 

Bnm
+(ρ0,φ0) = -iFn (n+1/2) [- i/(n+1/2)]m  

          × {Im-1(Qn)  cos[(m-1)φ0] + Im+1(Qn)  cos[(m+1)φ0]}                                           (13a) 

Bnm
-(ρ0,φ0) = - Fn (n+1/2) [- i/(n+1/2)]m   

          × {Im-1(Qn)  sin[(m-1)φ0] + Im+1(Qn)  sin[(m+1)φ0]}                                            (13b) 

Bn
0(ρ0,φ0) = -2i Fn (n+1/2) I1(Qn) cos(φ0)  .                                                                  (13c) 

To the best of our knowledge, the beam shape coefficients for a y-polarized localized model off-axis Gaussian beam 

have not appeared in this form in the literature before.  Equivalent results, though expressed rather differently, and 

based on rotating an x-polarized beam and the scattering plane by 90° while leaving the Cartesian axes fixed, were 

derived in [32,33].  The beam shape coefficients satisfy a number of symmetry relations.  In particular, Anm
+, Anm

-, 

An
0 for a y-polarized beam are the same as Bnm

+, Bnm
-, Bn

0 for an x-polarized beam, and Bnm
+, Bnm

-, Bn
0 for a y-

polarized beam are the negative of Anm
+, Anm

-, An
0 for an x-polarized beam.  The beam shape coefficients for a 

localized off-axis Gaussian beam linearly polarized in any transverse direction can be written as a linear 

combination of the coefficients of an x-polarized and a y-polarized beam.   

      When the electric field of the incident beam is x-polarized at the center of its focal waist, substitution of 

Eqs.(8),(9) for the localized beam shape coefficients into Eqs.(2a),(2b) for the scattering amplitudes gives 
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                           ∞ 

S1(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) bn I1(Qn) τn
0(θ) sin(φ0) 

                          n=1 

              ∞                            n 

        + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m τn
m(θ)  

             n=1                         m=1  

                   × [Im
-(Qn) sin(mχ) cos(φ0) + Im

+(Qn) cos(mχ) sin(φ0)] 

              ∞                            n 

        + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m mπn
m(θ) 

             n=1                         m=1  

                     × [Im
+(Qn) sin(mχ) cos(φ0) + Im

-(Qn) cos(mχ) sin(φ0)]                      (14a) 

and 

                           ∞ 

S2(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) an I1(Qn) τn
0(θ) cos(φ0) 

                          n=1 

             ∞                                     n 

       + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m τn
m(θ)  

            n=1                         m=1  

                      × [Im
+(Qn) cos(mχ) cos(φ0) - Im

-(Qn) sin(mχ) sin(φ0)] 

             ∞                            n 

       + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m mπn
m(θ)  

            n=1                         m=1  

               × [Im
-(Qn) cos(mχ) cos(φ0) - Im

+(Qn) sin(mχ) sin(φ0)]  ,                          (14b) 

where 

Im
±(Qn) ≡ Im-1(Qn) ± Im+1(Qn)                                                                                  (15) 

χ ≡ φ – φ0  .                                                                                                            (16) 

When the electric field of the incident beam is y-polarized at the center of its focal waist, substitution of 

Eqs.(12),(13) into Eqs.(2a),(2b) gives 

                              ∞  

S1(θ,φ;ρ0,φ0) =  - i ∑ cn Fn (n+1/2) bn I1(Qn) τn
0(θ) cos(φ0) 

                             n=1 

            ∞                             n 

       - i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m τn
m(θ)  

           n=1                         m=1  

                    × [Im
+(Qn) cos(mχ) cos(φ0) - Im

-(Qn) sin(mχ) sin(φ0)] 

            ∞                            n 

       - i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m mπn
m(θ)  

           n=1                          m=1  

                    × [Im
-(Qn) cos(mχ) cos(φ0) - Im

+(Qn) sin(mχ) sin(φ0)]                                   (17a) 

and 
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                           ∞ 

S2(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) an I1(Qn) τn
0(θ) sin(φ0) 

                          n=1 

            ∞                             n 

       + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m τn
m(θ)  

            n=1                         m=1  

                    × [Im
-(Qn) sin(mχ) cos(φ0) + Im

+(Qn) cos(mχ) sin(φ0)] 

            ∞                             n 

       + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m mπn
m(θ)  

            n=1                          m=1  

                    × [Im
+(Qn) sin(mχ) cos(φ0) + Im

-(Qn) cos(mχ) sin(φ0)]  .                            (17b) 

It should be noted that the scattering amplitudes also satisfy a number of symmetry relations.  In particular, S2 for a 

y-polarized beam is identical to S1 for an x-polarized beam with the Lorenz-Mie partial wave scattering amplitudes 

an and bn interchanged.  Similarly, S1 for a y-polarized beam is the negative of S2 for an x-polarized beam with an 

and bn interchanged.  Since the scattering plane in the dynamic light scattering experiments described in Sec.1 is the 

horizontal yz plane with φ=±90°, if the incident beam is polarized in the vertical x direction, the VV scattering 

amplitude is S1(θ,φ;ρ0,φ0) and the VH scattering amplitude is S2(θ,φ;ρ0,φ0).  If the incident beam is polarized in the 

horizontal y direction, the HV scattering amplitude is S1(θ,φ;ρ0,φ0) and the HH scattering amplitude is S2(θ,φ;ρ0,φ0).    

Equations (14)-(17) show that if the beam is displaced an equal distance above or below the scattering 

plane (i.e. φ0=0° or 180°), each of the individual VV, VH, HV, and HH scattered intensities is the same in the 

scattering plane to either side of the forward direction (i.e. φ or –φ for fixed θ) [34].  Similarly, each of the 

individual VV and HH scattered intensities is the same when the beam is displaced off-axis to the left in the 

scattering plane and the detector is to the right, as when the beam is displaced off-axis to the right in the scattering 

plane and the detector is to the left [34].  Substitution of ρ0→0 for an on-axis beam or s→0 for an incident plane 

wave into Eqs.(14),(17) verifies that for these special cases, the cross-polarized VH and HV scattered intensities are 

identically zero, as mentioned in Sec.1 concerning the impossibility of cross-polarized scattering by a homogeneous 

spherical particle.  The VH and HV intensities are also identically zero when the beam is displaced off-axis in the 

scattering plane.  But when the beam is displaced off-axis perpendicular to the scattering plane, the cross-polarized 

VH and HV scattered intensities are nonzero, and are examined in detail in Sec.3.  

2c. Simplification for θ=0° and θ=180°     

Evaluation of SVV, SVH, SHV, and SHH as described in the comments following Eqs.(14)-(17) requires that the sum over 

azimuthal modes m must be either analytically or numerically evaluated.  An exception to this occurs for θ=0°,180° 

where the only nonzero contribution to the sum is the m=1 term.  The value of the GLMT angular functions in the 

forward direction is  

τn
±1(0°) = πn

±1(0°) = n(n+1)/2                                                                                         (18a)  

τn
±m(0°) = πn

±m(0°) = 0 for m ≠ 1  .                                                                                (18b)  

For an x-polarized incident beam, substituting Eqs.(18a),(18b) into Eqs.(14a),(14b) gives 

                                        ∞ 

S1(0°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (an+bn) I0(Qn) sin(φ) 
                                      n=1 

                          ∞ 

             + ∑ Fn (n+1/2) (an-bn) I2(Qn) sin(φ-2φ0)  ,                                                             (19a) 
                        n=1 
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                          ∞ 

S2(0°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (an+bn) I0(Qn) cos(φ) 
                                      n=1 

                        ∞ 

            + ∑ Fn (n+1/2) (an-bn) I2(Qn) cos(φ-2φ0)  .                                                       (19b) 
                       n=1 

Since φ is indeterminate when θ=0°, neither S1 nor S2 alone can correspond to the scattered electric field in the x or y 

direction.  They must be combined together as in Eq.(1a) in order to cancel away the φ dependence.  Evaluating uθ 

and uφ at θ=0°, one obtains  

uθ = cos(φ) ux + sin(φ) uy                                                                                                                                            (20a) 

uφ = - sin(φ) ux + cos(φ) uy  .                                                                                        (20b) 

The forward-scattered electric field of Eq.(1a) then becomes 

Escatt(r,0°;ρ0,φ0) = (iE0/kr) exp(ikr) {[S2(0°,φ;ρ0,φ0) cos(φ) + S1(0°,φ;ρ0,φ0) sin(φ)] ux  

                       + [S2(0°,φ;ρ0,φ0) sin(φ) – S1(0°,φ;ρ0,φ0) cos(φ)] uy}  .              (21) 

Substituting Eqs.(19a),(19b) into Eq.(21), one obtains for an x-polarized incident beam 

                                                                                         ∞ 

Escatt(r,0°;ρ0,φ0) = (iE0/kr) exp(ikr) {∑ Fn (n+1/2) (an+bn) I0(Qn) ux 
                                                                                       n=1 

                 ∞ 

        + ∑ Fn (n+1/2) (an-bn) I2(Qn) [cos(2φ0) ux + sin(2φ0) uy]}   .                 (22) 
                n=1  

The terms in Eq.(22) proportional to ux are the VV electric field, and the term proportional to uy is the VH electric 

field.   

For an incident y-polarized beam, substituting into Eqs.(17a),(17b) gives 

                                           ∞ 

S1(0°,φ;ρ0,φ0) = - ∑ Fn (n+1/2) (an+bn) I0(Qn) cos(φ) 
                                          n=1 

                                       ∞ 

                      + ∑ Fn (n+1/2) (an-bn) I2(Qn) cos(φ-2φ0)  ,                                                     (23a) 
                                     n=1 

                          ∞ 

S2(0°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (an+bn) I0(Qn) sin(φ) 
                                      n=1 

                                    ∞ 

                     - ∑ Fn (n+1/2) (an-bn) I2(Qn) sin(φ-2φ0)  .                                                          (23b) 
                                   n=1 

The forward-scattered electric field is 

                                                                                         ∞ 

Escatt(r,0°;ρ0,φ0) = (iE0/kr) exp(ikr) {∑ Fn (n+1/2) (an+bn) I0(Qn) uy 
                                                                                        n=1 

                                              ∞ 

                          + ∑ Fn (n+1/2) (an-bn) I2(Qn) [sin(2φ0) ux - cos(2φ0) uy]}  .                                          (24) 
                                            n=1  

The terms proportional to uy in Eq.(24) are the HH electric field, and the term proportional to ux is the HV electric 

field.  It should be noted that for φ0=-90°,180° for off-axis incidence either in the scattering plane or perpendicular 

to it, Eqs.(22),(24) give EVH(0°)=EHV(0°)=0. 
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      The value of the GLMT angular functions in the back-scattering direction is  

τn
±1(180°) =  (-1)n n(n+1)/2                                                                                    (25a)   

πn
±1(180°) = - (-1)n n(n+1)/2  ,                                                                               (25b)  

τn
±m(180°) = πn

±m(180°) = 0 for m ≠ 1  .                                                                 (25c) 

For an x-polarized incident beam, substituting Eqs.(25a)-(25c) into Eqs.(14a),(14b) gives 

                                                 ∞ 

S1(180°,φ;ρ0,φ0) = - ∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) sin(φ) 
                                                n=1 

                ∞ 

        - ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) sin(φ-2φ0)  ,                                            (26a) 
                n=1 

                              ∞ 

S2(180°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) cos(φ) 
                                            n=1 

                        ∞ 

            + ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) cos(φ-2φ0)  .                                       (26b) 
                       n=1 

Evaluating uθ and uφ at θ=180°, one obtains  

uθ = - cos(φ) ux - sin(φ) uy                                                                                                                              (27a) 

uφ = - sin(φ) ux + cos(φ) uy  .                                                                                (27b) 

The back-scattered electric field of Eq.(1a) then becomes  

Escatt(r,180°;ρ0,φ0) = (iE0/kr) exp(ikr){[- S2(180°,φ;ρ0,φ0) cos(φ) + S1(180°,φ;ρ0,φ0) sin(φ)] ux  

                                - [S2(180°,φ;ρ0,φ0) sin(φ) + S1(180°,φ;ρ0,φ0) cos(φ)] uy}  .  (28) 

Substituting Eqs.(26a),(26b) into Eq.(28), one obtains for an x-polarized incident beam   

                                                                                                  ∞ 

Escatt(r,180°;ρ0,φ0) = - (iE0/kr) exp(ikr){∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) ux 
                                                                                                n=1 

            ∞ 

      - ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) [cos(2φ0) ux + sin(2φ0) uy]}   .                  (29) 
           n=1  

The terms in Eq.(29) proportional to ux are the VV electric field, and the term proportional to uy is the VH electric 

field.  For an incident y-polarized beam, substituting into Eqs.(17a),(17b) gives 

                                              ∞ 

S1(180°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) cos(φ) 
                                            n=1 

                            ∞ 

               + ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) cos(φ-2φ0)  ,                                             (30a) 
                           n=1 

                              ∞ 

S2(180°,φ;ρ0,φ0) = ∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) sin(φ) 
                                            n=1 

                       ∞ 

             - ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) sin(φ-2φ0)  .                                                 (30b) 
                      n=1 
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The back-scattered electric field is 

                                                                                                  ∞ 

Escatt(r,180°;ρ0,φ0) = - (iE0/kr) exp(ikr) {∑ Fn (n+1/2) (-1)n (an-bn) I0(Qn) uy 
                                                                                                 n=1 

          ∞ 

   + ∑ Fn (n+1/2) (-1)n (an+bn) I2(Qn) [cos(2φ0) uy - sin(2φ0) ux]}   .                                 (31) 
         n=1 

The terms proportional to uy in Eq.(31) are the HH electric field, and the term proportional to ux is the HV electric 

field.  Again it should be noted that for φ0=-90°,180°, Eqs.(29),(31) give EVH(180°)=EHV(180°)=0. 

      The form of the scattered electric field in the exact forward and backward directions in Eqs.(22),(24),(29),(31) 

due to an off-axis Gaussian beam has a formal structure that is identical to the structure of the scattered electric field 

in the near-forward and near-backward directions for an incident plane wave in Lorenz-Mie theory.  In the near-

forward direction where θ is small, let 

Θn ≡ (n+1/2) θ  ,                                                                                                               (32) 

and in the near-backward direction let 

Ξn ≡ (n+1/2) (π-θ)  .                                                                                                         (33) 

Then the near-forward scattered electric field for an incident x-polarized or y-polarized plane wave is found to be 

identical in structure to Eqs.(22),(24) with the substitutions Fn→1, φ0→φ, I0(Qn)→J0(Θn), and I2(Qn)→-J2(Θn), 

where Ji(x) is a Bessel function.  Similarly, the near-backward scattered electric field for an x-polarized or y-

polarized plane wave is found to be identical in structure to Eqs.(29),(31) with the same substitutions, except that Ξn 

replaces Θn [35-37].  As to nomenclature, whereas in this study the term cross-polarized scattering is used to pertain 

to measurements made only in the scattering plane described in Sec.1, the same term is used in [37] to pertain to 

measurements made in all directions near back-scattering.   

3. Numerical Example  

Figures 2,3, respectively, show the exact VV and HH co-polarized  GLMT scattered intensity for the following 

beam and particle and parameters.  As in [13], the beam parameters are λ=0.5145μm for the green line of an argon ion 

laser, w0=20μm, ρ0=40μm, and the particle parameters are a=43.3μm, M=1.33.  Whereas Eqs.(14)-(17) indicates that 

the sum over azimuthal modes m is performed first and the sum over partial waves n is performed last, the numerical 

evaluation of the double sum is more conveniently organized when the order of the sums is reversed [13].  In previous 

numerical studies, the maximum value of m computed, mmax, has often been taken to be mmax=10 for the beam and 

particle parameters considered here [38].  Additional numerical experimentation has now shown that although 

mmax=10 is sufficient for convergence for the co-polarized VV and HH scattering amplitudes, it is not sufficient for 

the much weaker cross-polarized VH and HV scattering amplitudes.  Experimentation with mmax=20, 30, and 40 

indicates that mmax=20 gives good convergence for the beam and particle parameters used here.  The reason for this 

larger value for mmax for cross-polarized scattering will be discussed in [12].  For the remainder of this study and in 

[12], the sum over m is truncated at mmax=20 for all polarization channels. 

The morphology of rainbows of various orders and the presence or absence of a Brewster angle intensity null are 

used here as diagnostics to assess whether the scattered intensity in any polarization channel is primarily TE- or TM-

polarized.  In Fig.2 the beam is translated off-axis in the φ=90° scattering plane with φ0=-90°.  The VV scattered 

intensity is TE-polarized.  It is nearly identical to Fig.4a of [13] for 0°≤θ≤180°, and is nearly the mirror image of 

Fig.4c of [13] for 180°≤θ≤360°.  The TE-polarized first- and second-order rainbows are clearly visible at θ≈138° and 
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θ≈233° respectively.  The interference of the principal maximum of the third-order rainbow with external reflection is 

evident at θ≈315°.  Directly transmitted light dominates for 10°<θ<90°, and the principal maximum of the TE-

polarized fifth-order rainbow is present at θ≈130°.  The HH scattered intensity in Fig. 3 for φ0=-90° is TM-polarized.  

The first- and second-order rainbows exhibit a number of supernumeraries without the presence of a strong principal 

maximum [39], and the Brewster angle for directly reflected light is evident at θ≈286°.  As mentioned at the end of 

Sec.2b, since the beam is translated off-axis in the scattering plane, the exact GLMT cross-polarized VH and HV 

scattered intensities vanish.   

In Figs. 4,5, the beam is translated off-axis perpendicular to the φ=90° scattering plane with φ0=180° for the same 

beam and particle parameters as above.  Whereas in Figs. 2,3 the scattering angle was plotted for 0°≤θ≤360°, it is 

plotted in Figs. 4,5 for only 0°≤θ≤180° since the scattered intensity is exactly symmetric about θ=180°, as was 

mentioned at the end of Sec. 2b.  The VV intensity qualitatively resembles the on-axis intensity of Fig.4b of [13].  

The first- and second-order rainbows are absent in the rather featureless VV and HH intensities because the off-axis 

beam is only half as wide as the particle, and the beam center is incident on the particle far from the impact parameter 

of the first- and second-order rainbows, which is near the edge of the scattering plane.  As was recently shown in [29] 

for scattering by an off-axis elliptical Gaussian beam, the cross-polarized VH and HV scattered intensities are 

nonzero.  They are a number of orders of magnitude weaker than the co-polarized VV and HH intensities, and exhibit 

much interesting structure.  The principal peak of the TE-polarized first-order rainbow at θ≈138° and a number of its 

supernumeraries are readily visible in the HV scattered intensity.  Remnants of the TE-polarized second-order 

rainbow also appear at θ≈130°.  Some structure associated with the supernumeraries of the first-order TM rainbow, 

without the presence of a strong principal rainbow peak [39], are also evident in the VH scattered intensity at θ≈138°.  

An explanation for this will be proposed in [12], based on the approximation to the scattering amplitudes developed 

there. 

 

 
Fig. 2: Scattered intensity |SVV|

2 as a function of the scattering angle θ for 0°≤θ≤360° for a Gaussian beam with λ=0.5145μm, w0=20.0μm incident on a 

homogeneous spherical particle with a=43.3μm, M=1.33.  The scattering plane is φ=90°, and the beam is off-axis in the scattering plane with ρ0=40μm, φ0=-90°. 

The scattered intensity |SVH|2 is identically zero. 
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Fig. 3: Scattered intensity |SHH|2 as a function of the scattering angle θ for the same beam, particle, and detector plane parameters as in Fig. 2. |SHV|

2 is identically 

zero. 

 

 
Fig. 4: Scattered intensity |SVV|

2 and |SVH|2 as a function of the scattering angle θ for 0°≤θ≤180° for the Gaussian beam and particle of Fig.2.  The scattering plane 

is φ=90°, and the beam is off-axis perpendicular to the scattering plane with ρ0=40μm, φ0=180°. 

 
Fig. 5: Scattered intensity |SHH|2 and |SHV|

2 as a function of the scattering angle θ for the same beam, particle, and detector plane parameters as in Fig. 2. 
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4. Symmetry Breaking and Cross-Polarized Scattering 

 

4a.  Ray Theory for Plane Wave Incidence 

In Subsections 4a-4c, ray theory ideas are used to motivate various approximations to the wave theory scattering 

amplitudes that will be found to be useful in the second part of this study [12].  As a first example, let an x-polarized 

plane wave with electric field strength E0 be incident on a spherical particle.  The scattering amplitudes of 

Eqs.(1a),(1b) are separable in θ and φ with 

S1(θ,φ) = S1(θ) sin(φ)                                                                                                (34a) 

S2(θ,φ) = S2(θ) cos(φ) ,                                                                                              (34b) 

 

where S1(θ) and S2(θ) are the Lorenz-Mie scattering amplitudes (see p.125 of [7] and Eq.(4.74) of [8]), 

             ∞ 

S1(θ) = ∑ cn [an πn
1(θ) + bn τn

1(θ)]                                                                            (35a) 

            
n=1 

             ∞ 

S2(θ) = ∑ cn [an τn
1(θ) + bn πn

1(θ)]  .                                                                         (35b) 

            
n=1 

Similarly, the scattering amplitudes for a y-polarized incident plane wave are 

S1(θ,φ) = - S1(θ) cos(φ)                                                                                              (36a) 

S2(θ,φ) = S2(θ) sin(φ)  .                                                                                              (36b) 

 

      An incident plane wave can be modeled by a large group of parallel geometrical rays, each of magnitude E0 and 

propagating in the +z direction.  Rays incident in the scattering plane at the sphere’s equator will remain in the same 

plane after scattering.  If the scattering plane is the horizontal yz plane, substitution of φ=±90° into Eqs.(34),(36) gives 

SVV(θ,φ=±90°) = ±S1(θ)                                                                                                (37a) 

SHH(θ,φ=±90°) = ±S2(θ)                                                                                                (37b) 

SVH(θ,φ=±90°) = SHV(θ,φ=90°) = 0  .                                                                            (37c) 

 

 
Fig. 6:  Geometry of a Gaussian beam incident off-axis with respect to a spherical particle of radius a.  The center of the 

particle is C, the beam axis is B, and P is an arbitrary point in the z=0 plane. 



14 
Published in Journal of Quantitative Spectroscopy and Radiative Transfer 221 (2018) 260 - 272 

4b. Ray Theory for On-Axis Gaussian Beam Incidence 

The Gaussian beam considered in Sec. 3 has λ=0.5145μm and w0=20μm, and the scattering particle has a=43.3μm.  

The beam confinement parameter of Eq.(7) is s=4.09×10-3, and the half-length of the beam focal waist is 

L/2 = kw0
2/2 = 2443 μm  .                                                                                      (38) 

Since w0≫λ and (L/2)≫a, the beam barely changes its shape in the vicinity of the scattering particle at the center of its 

focal waist.  Thus it is not unreasonable to extend ray theory ideas to this situation.  The simplest approximate model 

of an x-polarized Gaussian beam is an infinitely long tube of electric and magnetic field of unchanging half-width w0 .   
As was mentioned in Sec. 2 and is illustrated in Fig.6, the center of the scattering particle and the center of the beam’s 

focal waist both lie in the same plane transverse to the beam axis.  The center of the particle coincides with the origin 

of the coordinate system, and the vector from this origin to an arbitrary point in the transverse plane is ρ.  The vector 

from the origin to the beam axis is ρ0, and the vector from the beam axis to the same arbitrary point in the transverse 

plane is ρ-ρ0.  If the Gaussian beam is on-axis with respect to the scattering particle, this simple model of the electric 

field gives 

 

E
on-axis ≈ E0 exp(ikz) exp[-|ρ|2/w0

2] ux     

           = E0 exp(ikz) exp[-s2(kρ)2] ux  ,                                                                         (39) 

 

which is independent of the azimuthal angle φ.  This was also the case for an incident plane wave. 

      The localization principle of van de Hulst (see pp.208-209 of [7]) can be used to associate the ray impact 

parameter kρ with the partial wave (n+1/2) to give the magnitude, An, of an effective  ray of the Gaussian beam.  This 

ray magnitude is then substituted into Eqs.(35a),(35b) of Lorenz-Mie theory to give our ray-theory-based 

approximation to the co-polarized GLMT scattering amplitudes for an incident Gaussian beam, 

               ∞ 

SVV(θ) ≈ ∑ cn An [an πn
1(θ) + bn τn

1(θ)]                                                                           (40a) 

              n=1 

               ∞ 

SHH(θ) ≈ ∑ cn An [an τn
1(θ) + bn πn

1(θ)]  .                                                                        (40b)           
                     n=1 

Since the effective rays of the Gaussian beam are incident in the horizontal scattering plane at the sphere’s equator, 

they remain in the horizontal plane after scattering with the same polarization as the incident rays.  Thus ray theory 

for Gaussian beam scattering again predicts that   

SVH(θ) = SHV(θ) = 0  .                                                                                                       (41) 

 

For the on-axis Gaussian beam of Eq.(39), one has  

An = exp[-s2(n+1/2)2]                                                                                                      (42) 

 

as the magnitude of an effective ray.  Equations (40a),(40b) for the VV and HH scattering amplitudes with the on-axis 

effective ray magnitude of Eq.(42) are identical to the VV and HH scattering amplitudes that have been obtained for 

the localized model of an on-axis Gaussian beam, and that have been rigorously derived using the generalized Lorenz-

Mie theory of wave scattering without appealing to ray theory ideas [24].   

For 0°≪θ≪180° and (n+1/2)≫1, the amplitude of the oscillatory function τn
1(θ) is much larger than that of 

πn
1(θ), and Eqs.(40a),(40b) can be further approximated as 

              ∞ 

SVV(θ) ≈ ∑ cn bn An τn
1(θ)                                                                               (43a) 

              
n=1 

               ∞ 

SHH(θ) ≈ ∑ cn an An τn
1(θ)  .                                                                          (43b) 

              
n=1
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Equations (43a),(43b) will be found in Sec. 4 of [12] to be identical to an approximation to the co-polarized scattering 

amplitudes for both on-axis and off-axis beam incidence, derived there using the generalized Lorenz-Mie theory of 

wave scattering.  We will show there that for off-axis beam incidence, an approximation to the GLMT angular 

functions permits the sum over azimuthal modes m to be evaluated analytically, leaving only a sum over partial waves 

n, of the form of Eqs.(43a),(43b).    

 

4c. Ray Theory for Off-Axis Gaussian Beam Incidence 

We now assume that the Gaussian beam is off-axis with respect to the scattering particle, giving  

E
off-axis ≈ E0 exp(ikz) exp[-|ρ-ρ0|

2/w0
2] ux 

       = E0 exp(ikz) exp[-s2(kρ)2] exp(-ρ0
2/w0

2) exp[ε (kρ) cos(φ-φ0)] ux   ,    (44) 

where 

ε ≡ 2sρ0/w0  .                                                                                                         (45) 

 

Equation (44) explicitly depends on φ and is no longer circularly symmetric with respect to the coordinate system 

whose origin coincides with the center of the particle.  Using the same ray-theory-based approximation for this off-

axis Gaussian beam, along with the van de Hulst localization principle, the magnitude of an effective ray in Eq.(44) is  

 

An = Fn exp[(n+1/2) ε cos(φ-φ0)]  ,                                                                          (46) 

 

where Fn was defined in Eq.(10).  If the beam is off-axis in the horizontal scattering plane with φ=90°, φ0=-90°, then 

the effective ray magnitude of Eq.(46) reduces to 

An = Fn exp[(n+1/2) ε]  .                                                                                               (47) 

 

This is then substituted into Eqs.(40a),(40b) or Eqs.(43a),(43b) to give a ray-theory-based approximation to the VV 

and HH scattering amplitudes.  If the beam is off-axis perpendicular to the scattering plane with φ=90°, φ0=180°, then 

the effective ray magnitude is 

An = Fn  .                                                                                                                        (48) 

 

This is again substituted into Eqs.(40),(43) to give the ray-theory-based co-polarized scattering amplitudes.   

The ray-theory-based absence of cross-polarized scattering in Eq.(41) conflicts with the nonzero VH and HV 

scattering found in Figs.4,5.  Thus cross-polarized scattering will have to be understood in the context of wave theory.  

This claim will be reinforced in the next subsection where the magnitude of SVH(θ) and SHV(θ) is found to be of order 

ε=λρ0/πw0
2, when compared to the magnitude of the dominant scattering amplitudes SVV(θ) and SHH(θ).  This scaling 

factor is wavelength dependent, indicating that it is a wave theory effect.  If nonzero cross-polarized scattering were 

to be explainable as purely a ray theory effect, the overall magnitude of SVH(θ) and SHV(θ) would have to be 

independent of λ.  This is because in the short-wavelength limit, the portion of SVV(θ) and SHH(θ) corresponding to 

geometrical optics (see Sec. 5 of [40]) scales as (ka), and when combined with the 1/(kr) factor in Eqs.(1a),(1b), gives 

scattered VV and HH fields that are independent of λ.    

 

4d.  Symmetry Breaking in Wave Theory 

The fact that nonzero cross-polarized scattering is a consequence of wave theory symmetry breaking may be 

motivated in two stages.  The first stage relies on the mathematics of the coupling of angular momentum states which 

is familiar in quantum mechanical scattering, (see Sec.16.2 of [41]).  The on-axis x-polarized Gaussian beam of 

Eq.(39) can be written as 

E
on-axis ≈ E0 exp(ikz) exp[-|ρ|2/w0

2] ux 

                      ∞   

      = E0 ∑ in (2n+1) jn(kr) Pn
0[cos(θ)] exp[-r2sin2(θ)/w0

2] (- u+ + u-)/2
1/2  ,                     (49) 

            
n=0 
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(see Eq.(11.56) of [41]), where jn(kr) is a spherical Bessel function and u+ and u- are the circular polarization states 

(see Eq.(16.111) of [41]) 

u+ = - (ux + i uy)/2
1/2                                                                                                                                                                   (50a) 

u- = (ux – i uy)/2
1/2   .                                                                                                            (50b) 

 

Since the beam in Eq.(49) is independent of the azimuthal angle φ, the Legendre function Pn
0[cos(θ)] is a state of 

orbital angular momentum whose magnitude is n and whose z-component is nz=0.  Similarly, the circular polarization 

unit vectors u+ and u- are states of angular momentum whose magnitude is s=1 and whose z-component is ms=±1.  

Equation (49) thus contains the product of two angular momentum states, and as such, it is called an uncoupled 

representation of the electric field.  According to the mathematics of group theory, a product representation of the 

rotation group may be expressed as a direct sum of a number of irreducible representations (see Eq.(16.87) of [41]).   

Thus in the coupled representation of a linearly polarized on-axis beam, the two separate angular momenta are 

combined into total angular momentum states (see Sec.16.6 of [41]) whose magnitude j is constrained to integer steps 

in the interval   

|n - s| ≤ j ≤ n + s                                                                                                               (51a) 

and whose z-component is  

mj = mn + ms   .                                                                                                                 (51b) 

For the example of an on-axis beam of Eq.(49), the coupled angular momentum states have partial wave numbers 

n+1, n, and n-1, and z-component mj=±1.  The j=n+1 and j=n-1 states taken together can be shown to be electric 

multipole or TM waves, while the j=n states can be shown to be magnetic multipole or TE waves, each of which are 

described in terms of the Lorenz-Mie angular functions (see Sec.9.31 of [7]) τn
±1(θ) and πn

±1(θ).     

      In like manner, the x-polarized off-axis Gaussian beam of Eq.(43) can be written as 

 

E
off-axis ≈E0 exp(ikz) exp[-|ρ-ρ0|

2/w0
2] ux 

                 ∞   

   = E0 ∑ in (2n+1) jn(kr) Pn
0[cos(θ)] exp[-r2sin2(θ)/w0

2]  

          
n=0 

       × exp(-ρ0
2/w0

2) exp[ε (kρ) cos(φ-φ0)] (- u+ + u-)/2
1/2  .                                   (52) 

The beam of Eq.(52) now explicitly depends on the azimuthal angle φ.  Because of this, if the φ-dependent 

exponential were expanded in terms of a sum of spherical harmonics, (i.e. angular momentum states), with partial 

wave number noff-axis and azimuthal mode number moff-axis, the sum would contain all values of moff-axis.  When these 

off-axis angular momentum states are coupled to both the orbital angular momentum states of Pn
0[cos(θ)] and the 

angular momentum states of the circular polarization unit vectors u+ and u-, they give rise to the GLMT scattering 

amplitudes S1 and S2 containing sums over all azimuthal modes m as in Eqs.(14),(17) which are described by the full 

range of GLMT angular functions τn
m(θ) and πn

m(θ).   

In order to more clearly understand why there is a larger range of m values for an off-axis beam than there 

was for an on-axis beam, let the beam be translated only slightly off-axis with 0<ε≪1/kρ.  One can then Taylor series 

expand the exp[ε (kρ) cos(φ-φ0)] factor in Eq.(52) to obtain 

 

exp[ε (kρ) cos(φ-φ0)]  ≈ 1 + ε (kρ) cos(φ-φ0)  + O(ε2)                                                    (53) 

 

The first term of Eq.(53) is independent of φ, and thus is circularly symmetric, corresponding to moff-axis=0 and mj=±1, 

as was the case for an on-axis beam and a plane wave.  The second term varies sinusoidally in φ, corresponding to 

moff-axis=±1, and is not circularly symmetric .  Coupling these states to both the mn=0 states of the Legendre 

polynomials and the ms=±1 states of the circular polarization unit vectors, one obtains the spherical multipole 

radiation states with the larger range of azimuthal modes, mj=0, ±1, ±2.  Progressively higher order terms in the 

Taylor series expansion produce an increasingly wider range of mj values.   

The second stage of the wave theory analysis uses this fact along with the properties of the beam shape 

coefficients to show that cross-polarized scattering is identically zero for an on-axis beam, and that this results from 
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the spherical symmetry of the beam with respect to the coordinate system with its origin at the center of the particle.  

Consider the case when the Gaussian beam first begins to be translated off-axis.  Omitting constants of 

proportionality, Eqs.(4a),(4b) for the beam shape coefficients may be rewritten as  

           2π 
Anm

+ ~ ∫ dφ cos(mφ) Einc
rad(r,θ,φ)                                                                                (54a)  

           0 

               2π 
Anm

- ~ - i ∫ dφ sin(mφ) Einc
rad(r,θ,φ)                                                                             (54b)  

               0 

                2π 

Bnm
+

 ~ ∫ dφ cos(mφ) cBinc
rad(r,θ,φ)                                                                              (54c)  

                0 

                      2π 

Bnm
-
 ~ - i ∫ dφ sin(mφ) cBinc

rad(r,θ,φ) ,                                                                         (54d)  
                      0 

where the integral over θ and all the other multiplicative factors have been left implicit.  For the simple model of the 

x-polarized on-axis beam considered in Eq.(49), the radial component of the electric field is proportional to 

sin(θ)cos(φ) and the radial component of the magnetic field is proportional to sin(θ)sin(φ).  Then Eqs.(54a)-(54d) give 

An1
+ ~ i Bn1

- ~ π                                                                                                             (55a) 

An1
- = Bn1

+ = 0                                                                                                              (55b) 

Anm
± = Bnm

± = 0 for m≠1,                                                                                              (55c) 

in agreement with addition of angular momentum results mentioned above, and again with all the identical θ 

dependence left implicit.  For the simple model of the corresponding y-polarized on-axis beam whose radial 

component of the electric field is proportional to sin(θ)sin(φ) and whose radial component of the magnetic field is 

proportional to -sin(θ)cos(φ), Eqs.(54a)-(54d) give 

An1
+ = Bn1

- = 0                                                                                                                (56a) 

Bn1
+ ~ -i An1

- ~ -π                                                                                                           (56b) 

Anm
± = Bnm

± = 0  for m≠1  .                                                                                            (56c) 

According to Eqs.(2a),(2b) in the φ=90° scattering plane, the m=±1 portion of the scattering amplitudes is 

                              ∞ 

S1(θ,90°) = ∑ cn [i Bn1
- bn τn

1(θ) + An1
+ an πn

1(θ)]                                                         (57a) 
                           n=1  

                              ∞ 

S2(θ,90°) = ∑ cn [i An1
- an τn

1(θ) - Bn1
+ bn πn

1(θ)]  .                                                       (57b) 
                           n=1  

Substitution of Eq.(55b) for an x-polarized beam into Eq.(57b) gives SVH(θ,90°)=0, and substitution of Eq.(56a)for a 

y-polarized beam into Eq.(57a) gives SHV(θ,90°)=0.  Thus if the beam is on-axis, crossed-polarized scattering cannot 

occur. 

Consider now an x-polarized off-axis Gaussian beam and keep the non-circularly symmetric term in Eq.(53) 

that is first order in ε.  Using van de Hulst’s localization principle to associate the impact parameter kρ with the partial 

wave number n+1/2, Eqs.(54a)-(54d) for the beam shape coefficients for m=0 are 

An
0 ~ (n+1/2) επ cos(φ0)                                                                                                (58a)  

 

Bn
0
 ~ (n+1/2) επ sin(φ0)  ,                                                                                              (58b)  

 

and for m = ±2 they are 

An2
+ ~ i Bn2

-
 ~ (n+1/2) (επ/2) cos(φ0)                                                                           (58c)  

 

Bn2
+

 ~ -i An2
- ~ (n+1/2) (-επ/2) sin(φ0).                                                                        (58d)  
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The beam shape coefficients are zero for m≠0,2, in agreement with the addition of angular momentum results 

mentioned above.  For an off-axis y-polarized beam, again to first order in ε,  the beam shape coefficients for m = 0 

are  

An
0 ~ (n+1/2) επ sin(φ0)                                                                                                  (59a)  

 

Bn
0 ~ (n+1/2) επ cos(φ0)                                                                                                  (59b)  

 

and for m=±2 they are 

 

An2
+ ~ i Bn2

-
 ~ (n+1/2) (-επ/2) sin(φ0)                                                                              (59c)  

 

Bn2
+

 ~  -i An2
- ~ (n+1/2) (-επ/2) cos(φ0).                                                                          (59d)  

 

The beam shape coefficients are again zero for m≠0,2. 

According to Eqs.(2a),(2b) in the φ=90° scattering plane, the m=0 portion of the scattering amplitudes is 

                            ∞ 

S1(θ,90°) = (1/2) ∑ cn Bn
0
 bn τn

0(θ)                                                                                (60a) 

                           
n=1 

                            ∞ 

S2(θ,90°) = (1/2) ∑ cn An
0
 an τn

0(θ)  ,                                                                             (60b) 

                           n=1 

and the m=±2 portion is 

                              ∞ 

S1(θ,90°) = ∑ cn [-Bn2
+ bn τn

2(θ) + i An2
- an 2πn

2(θ)]                                                      (61a) 
                            n=1 

                              ∞ 

S2(θ,90°) = ∑ cn [-An2
+ an τn

2(θ) - i Bn2
- bn 2πn

2(θ)]  .                                                    (61b) 
                            n=1 

Substitution of Eqs.(58a),(58c) for an x-polarized beam into Eqs.(60b),(61b) for the VH scattering amplitude gives a 

nonzero result proportional to (n+1/2) ε cos(φ0).  Similarly, substitution of Eqs.(59b),(59d) for a y-polarized beam into 

Eqs.(60a),(61a) for the HV scattering amplitude gives a nonzero result also proportional to (n+1/2) ε cos(φ0).  This is 

consistent with the observation at the end of Sec.2 that cross-polarized scattering cannot occur when the beam is 

translated off-axis in the scattering plane.  In like manner, substitution of Eqs.(58b),(58d) for an x-polarized beam into 

Eqs.(60a),(61a) gives a correction to the VV scattering amplitude for off-axis incidence in the scattering plane, and 

substitution of Eqs.(59a),(59c) for a y-polarized beam into Eqs.(60b),(61b) gives a correction to the HH scattering 

amplitude for off-axis incidence in the scattering plane.  The m=0,±2 azimuthal modes of S1 and S2 are the first to join 

the circular symmetric m=±1 Lorenz-Mie modes to produce the onset of VH and HV cross-polarized scattering as the 

beam begins to be translated off-axis out of the scattering plane.  The amplitude of cross-polarized scattering is found 

in [12] to continue to be proportional to ε as the beam is translated off-axis by larger distances. 

  

4e.  Cross-Polarized Scattering and Davis Beams 

A focused Gaussian beam can be nearly equally well described in terms of either the localized beam model or the 

Davis beam model [42,43], as long as w0≫λ.  The localized beam is defined by the value of the beam shape 

coefficients An
m and Bn

m, and the field components are then derived from them.  Complementary to this, Davis beams 

are defined in terms of a series expansion in powers of s of the field components, and the beam shape coefficients can 

then be obtained from them.  The series expansion of the rectangular components of the Davis model of an x-

polarized Gaussian beam results from the constraint that the fields must satisfy Maxwell’s equations.  The lowest 

order contribution to the x-component of the electric field is of order s0, and the lowest order contribution to the z-

component and the y-component is of order s1 and s2, respectively.  The structure of the components of the Davis 
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magnetic field is similar.  Although the electric and magnetic fields of such a beam are in the x and y directions at the 

center of the beam waist, respectively, the electric field acquires small z and y components and the magnetic field 

acquires small z and x components elsewhere.  The details of the Davis model of a y-polarized Gaussian beam are 

similar.   

      Consider an x-polarized Davis beam centered on the off-axis position (x0, y0, z0=0).  The beam fields, to lowest 

order in s for each of the rectangular components are [42,43] 

 

E
Davis(x,y,z) = E0D exp(ikz) exp[-D(x-x0)

2/w0
2] exp[-D(y-y0)

2/w0
2] 

                 × {ux + [2s
2
D

2(x-x0)(y-y0)/w0
2] uy – [2isD(x-x0)/w0] uz}                              (62a) 

 

 BDavis(x,y,z) = (E0D/c) exp(ikz) exp[-D(x-x0)
2/w0

2] exp[-D(y-y0)
2/w0

2] 

                 × {[2s
2
D

2(x-x0)(y-y0)/w0
2] ux + uy – [2isD(y-y0)/w0] uz}    ,                         (62b) 

 

where the diffractive spreading of the beam as a function of z is given by 

D = [1 + 2isz/w0]
-1  .                                                                                                         (63) 

 

Expressing the rectangular coordinates (x,y) and (x0,y0) in terms of polar coordinates (ρ,φ) and (ρ0,φ0) as in Fig.6, 

using ε of Eq.(45) as a measure of the off-axis distance, and neglecting the diffractive spreading D of Eq.(63), 

Eqs.(62a),(62b) become 

 

E
Davis(ρ,φ,z;ρ0,φ0) = E0 exp(ikz) exp[-s2(kρ)2] exp (-ρ0

2/w0
2) exp[ε (kρ) cos(φ-φ0)] 

                            × {ux + [s4 (kρ)2 sin(2φ) – s2
ε (kρ) sin(φ+φ0) + (ε2/4) sin(2φ0)] uy 

                               + [-2is2 (kρ) cos(φ) + iε cos(φ0)] uz}                                                  (64a) 

 

B
Davis(ρ,φ,z;ρ0,φ0) = (E0/c) exp(ikz) exp[-s2(kρ)2] exp (-ρ0

2/w0
2) exp[ε (kρ) cos(φ-φ0)] 

                            × {[s4 (kρ)2 sin(2φ) – s2
ε (kρ) sin(φ+φ0) + (ε2/4) sin(2φ0)] ux + uy 

                               + [-2is2 (kρ) sin(φ) + iε sin(φ0)] uz}                                                   (64b) 

 

If one were to apply ray theory ideas to this beam, one would first evaluate the beam at the intersection of 

the φ=±90° scattering plane with the sphere equator.  The electric field of an x-polarized beam at the particle surface 

is 

E
Davis = E0 exp[-ika cos(θi)] exp[-s2(kρ)2] exp(-ρ0

2/w0
2) exp[ε (kρ) sin(φ0)]

 

               × [ux ∓ s2
ε (kρ) cos(φ0) uy + (ε2/4) sin(2φ0) uy + iε cos(φ0) uz]  ,                    (65) 

where θi is the angle of incidence of an effective ray at the surface of the sphere.  The expression for BDavis at the 

sphere surface is similar.  For in-plane off-axis incidence with φ0=90° and using the van de Hulst localization 

principle, the effective ray magnitude vector of Eq.(65) is   

An = Fn exp[ε (n+1/2)] ux                                                                                                   (66) 

 

as in Eq.(47).  For off-axis incidence perpendicular to the scattering plane with φ0=180°, the effective ray magnitude 

vector is 

An = Fn [ux + s2
ε (n+1/2) uy – iε uz] ,                                                                                 (67) 

 

which provides small uy and uz correction terms to Eq.(48).  For an incident x-polarized Gaussian beam (i.e. incident 

V as in Sec.1) and off-axis incidence perpendicular to the scattering plane, there is a small induced y-polarized field of 

strength s2
ε (n+1/2) relative to that of the dominant x-polarized electric field.  If one were to now apply the previously 

used ray-theory-based ideas to this y-polarized correction field, since it is incident in the horizontal scattering plane it 

will also exit the sphere in the scattering plane (i.e. outgoing H as in Sec.1).  One might be tempted to conjecture that 

it can be identified as the physical mechanism producing the cross-polarized VH scattering observed in Fig.4.  But 
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this cannot be the case since both in Sec.4c and in [12] it is seen that the dominant term in the VH scattering 

amplitude is of order ε relative to the dominant VV scattering amplitude.  The Davis beam y-polarized correction field 

discussed here is instead an order s2 correction to the dominant term. 

Now consider the z component of EDavis and BDavis in the context of wave theory.  Let the electric field of the 

incident beam be nominally x-polarized and propagate in the z direction.  The Maxwell equation  

∇•E = 0                                                                                                                        (68a) 

can be loosely written for this situation as  

∂Ex/∂x + ∂Ez/∂z = 0  .                                                                                                   (68b) 

This equation of constraint is easily solved for a plane wave since  

Ex = E0 exp(ikz)                                                                                                            (69)  

and there is no z component of E. 

But now consider an on-axis x-polarized freely diffracting Gaussian beam whose x component is  

Ex = DE0 exp(ikz) exp[-(x2+y
2)/w0

2]  .                                                                          (70) 

The partial derivative of ∂Ex/∂x is nonzero because of the transverse falloff of the beam.  So there must be a nonzero z 

component of E with a nonzero z-derivative so as to satisfy the constraint equation of Eq.(68b).  Since the fastest 

longitudinal variation of Ez is expected to be that of the exp(ikz) propagation factor, one has 

Ez ≈ ik ∂Ex/∂x  .                                                                                                              (71) 

This correction field, to lowest order in s, is identical to the z component of EDavis of Eq.(64a).  Substituting this into 

Eqs.(54a)-(54d) along with the circular-symmetry-preserving first term of the Taylor series expansion of exp[ε (kρ) 

cos(φ-φ0)] of Eq.(53) and using the van de Hulst localization principle, one obtains the correction term of the beam 

shape coefficients 

An
0 = 2i (n+1/2) επ cos(φ0)                                                                                            (72a) 

Bn
0 = 2i (n+1/2) επ sin(φ0)   .                                                                                         (72b) 

 

These are the same size as the m=0,2 corrections to the beam shape coefficients of Eqs.(58a)-(58d) due to circular 

symmetry breaking and described in Sec.4d.  The results for a y-polarized beam and their comparison to Eqs.(59a)-

(59d) is similar.  Thus a nonzero SVH(θ) and SHV(θ) is due to a combination of the wave scattering effects of (i) circular 

symmetry breaking of the off-axis beam (i.e. the second term of Eq.(53) along with Ex and By), and (ii) the constraint 

that the off-axis incident beam must be a solution of Maxwell’s equations (i.e. the first term of Eq.(53) with Ez and 

Bz).  In the context of a Davis beam, these are the only two contributions to the beam fields of order ε.  So it would 

seem that this exhausts the list of physical mechanisms responsible for the leading term of a nonzero SVH(θ) and 

SHV(θ).  

 

5. Summary 

Since cross-polarized scattering does not occur when an electromagnetic plane wave is scattered by a single 

homogeneous spherical particle, it has often been implicitly assumed that it continues to be impossible for all beams 

incident on the particle.  But since a diagonally incident plane wave gives rise to both co-polarized and cross-

polarized scattering, and complicated beams may be expressed as an angular spectrum of plane waves,  it should 

happen in some cases that the cross-polarized components will not completely cancel out when integrated over the 

angular spectrum.  When examining scattering by the localized model of a focused Gaussian beam we found that 

cross-polarized scattering does not occur for an on-axis focused Gaussian beam and a Gaussian beam translated off-

axis in the scattering plane, but that cross-polarized scattering does occur for a Gaussian beam translated off-axis out 

of the scattering plane.  We also found that for the beam and particle parameters examined here, it is orders of 

magnitude weaker than the intensity for co-polarized scattering.  In this regard, it should be mentioned that we 

preliminarily experimented with varying the values of ρ0 and w0 by a factor of two from the values given in Fig.4 for 

VV and VH scattering with φ0=180° and found that the ratio of the VH intensity to the VV intensity was slowly 

varying in this parameter range.  In addition, a few results for varying φ0 with fixed ρ0 and w0 are shown in Figs.5,6 

of [12] and are interpreted there.  Since the cross-polarized intensity depends on the scattering angle θ, as well as on 

the particle radius and refractive index, the beam width, and the off–axis beam location (ρ0, φ0), a systematic search 
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of this extensive parameter space should hopefully be able to identify favorable conditions under which the strength 

of cross-polarized scattering is optimized and might be experimentally observed.     

      On a more theoretical note, we also found that when the beam first begins to be translated off-axis, the m=0,±2 

azimuthal modes are the first to join the m=±1 modes of on-axis scattering, and produce the beginnings of the cross-

polarized response of the sphere.  An approximation to the exact GLMT scattering amplitudes is pursued in [12] 

which allows the sum over azimuthal modes m to be evaluated analytically, greatly decreasing the computer run 

time required for off-axis GLMT computations for scattering by particles with a≫λ.  Finally the role of diffraction, 

the Debye series decomposition of the partial wave scattering amplitudes, and time-domain scattering will be 

studied in [44]. 
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