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Abstract 

In static and dynamic light scattering, it has frequently been claimed that cross-polarized scattering cannot occur for 

single-scattering by a homogeneous spherical particle.  Although this is true for both plane wave and on-axis 

Gaussian beam incidence, it does occur when the beam is translated off-axis incidence perpendicular to the 

scattering plane.  An approximation to the co-polarized and cross-polarized scattering amplitudes is developed for 

which the sums over azimuthal modes can be evaluated analytically.  This approximation provides a close fit to the 

exact generalized Lorenz-Mie polarization-resolved intensity for a number of off-axis locations of the incident 

beam. 
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1. Introduction 

Part 1 of this study [1] dealt with a laser beam traveling in the horizontal +z direction that is linearly polarized either 

in the x direction perpendicular to the horizontal yz scattering plane (i.e. vertically or V) or in the scattering plane (i.e. 

horizontally or H), and is incident on a liquid-filled sample cell containing a large number of suspended spherical 

particles.  Singly-scattered light passes through a polarizer oriented either vertically (V) or horizontally (H) before 

being recorded by a detector.  If the incident beam is a plane wave, an on-axis focused Gaussian beam, or a Gaussian 

beam translated off-axis in the scattering plane, co-polarized VV and HH scattering will be observed but cross-

polarized VH and HV scattering cannot occur.  On the other hand, if the beam is translated off-axis with respect to a 

scattering particle in the direction perpendicular to the scattering plane, then both co-polarized and crossed-polarized 

scattering occur.    

The body of this study proceeds as follows.  The generalized Lorenz-Mie theory (GLMT) formulas for scattering 

of an off-axis localized model focused Gaussian beam by a spherical particle are reviewed in Section 2.  The GLMT 

scattering amplitudes for off-axis beam incidence contain a sum over both partial waves n and azimuthal modes m.  In 

Sections 3 and 4 the GLMT angular functions are expanded as an asymptotic series for large partial waves and for 

scattering angles away from 0° and 180°.  The form of the individual terms of the asymptotic series allows the sum 

over azimuthal modes to be evaluated analytically, leaving only the sum over partial waves to be evaluated 

numerically, as is the case for Lorenz-Mie scattering of a plane wave.  The predictions of the approximation are 

numerically compared with the results of the exact GLMT calculation.  In Section 5, a similar approximation is 

derived for scattering angles near 0° and 180°.  Our final conclusions concerning the approximation developed here 

are presented in Section 6.  Lastly, an appendix gives a derivation of the far-zone diffracted electric field of an off-

axis Gaussian beam by a circular aperture and its relation to the near-forward scattering amplitudes of Sec.5.  The 

physical interpretation of the near-forward diffraction structure, the Debye series decomposition of the co-polarized 

and cross-polarized scattering amplitudes, and time-domain scattering of an off-axis Gaussian beam are presented in 

[2].            
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2. Off-Axis Scattering by a Focused Gaussian Beam 

For convenience, this section repeats our main results for scattering of an off-axis localized model focused Gaussian 

beam by a spherical particle presented in [1].  The incident beam has the nominal electric field strength E0, 

wavelength λ, wave number k=2π/λ, angular frequency ω, implicit time dependence exp(-iωt), and confinement 

parameter 

 

s = λ/(2πw0)  .                                                                                                                         (1)  

 

The electric field half-width of the beam is w0 and the center of the beam’s focal waist is located at (ρ0,φ0) in a 

coordinate system in the z=0 plane whose origin coincides with the center of the scattering particle.  The spherical 

particle has radius a and refractive index M.   

      The r→∞ far-zone scattered electric and magnetic fields are 

Escatt(r,θ,φ)  = (iE0/kr) exp(ikr) [S2(θ,φ) uθ - S1(θ,φ) uφ]                                                 (2a)  

Bscatt(r,θ,φ) = (iE0/ckr) exp(ikr) [S1(θ,φ) uθ + S2(θ,φ) uφ]  ,                                            (2b) 

where φ is the azimuthal angle of the scattering plane with respect to the xz plane, θ is the scattering angle in that 

plane, and c is the speed of light.  The orthogonal unit vectors ur and uθ lie in the scattering plane, and uφ is 

perpendicular to it.  The transverse magnetic (TM) and transverse electric (TE) partial wave scattering amplitudes of 

Lorenz-Mie theory are an, bn, respectively, and the GLMT angular functions are 

 mπn
m(θ) = [m/sin(θ)] Pn

m[cos(θ)]                                                                                    (3a)  

τn
m(θ) = dPn

m[cos(θ)] / dθ  ,                                                                                              (3b) 

where Pn
m[cos(θ)] are associated Legendre functions as defined in Eqs.(12.81),(12.81a) of [3].   

      If the electric field of the incident localized model Gaussian beam is x-polarized at the center of its focal waist, 

the GLMT scattering amplitudes are 

                           ∞ 

S1(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) bn I1(Qn) τn
0(θ) sin(φ0) 

                          n=1 

              ∞                            n 

        + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m τn
m(θ)  

             n=1                          m=1  

                  × [Im
-(Qn) sin(mχ) cos(φ0) + Im

+(Qn) cos(mχ) sin(φ0)] 

              ∞                            n 

        + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m mπn
m(θ)  

            n=1                          m=1  

                × [ Im
+(Qn) sin(mχ) cos(φ0) + Im

-(Qn) cos(mχ) sin(φ0)]                                (4a) 

and 
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                           ∞ 

S2(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) an I1(Qn) τn
0(θ) cos(φ0) 

                          n=1 

             ∞                            n 

       + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m τn
m(θ)  

            n=1                          m=1  

                   × [Im
+(Qn) cos(mχ) cos(φ0) - Im

-(Qn) sin(mχ) sin(φ0)] 

             ∞                            n 

       + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m mπn
m(θ)  

           n=1                           m=1  

                     × [Im
-(Qn) cos(mχ) cos(φ0) - Im

+(Qn) sin(mχ) sin(φ0)]  ,                            (4b) 

where 

cn ≡ (2n+1)/[n(n+1)]                                                                                                      (5a) 

Fn ≡ exp(- ρ0
2/w0

2) exp[-s2 (n+1/2)2]                                                                             (5b) 

Qn ≡ (n+1/2) ε                                                                                                                (5c) 

ε ≡ 2sρ0/w0                                                                                                                      (5d) 

χ ≡ φ – φ0  ,                                                                                                                     (5e) 

Im
±(Qn) ≡ Im-1(Qn) ± Im+1(Qn)                                                                                           (5f) 

and Im(Qn) is a modified Bessel function.  The scattering amplitudes for an incident localized model Gaussian beam 

that is y-polarized at the center of its focal waist is given by Eqs.(17a),(17b) of [1].  The scattering amplitude S2 for a 

y-polarized beam is identical to S1 for an x-polarized beam with an and bn interchanged.  Similarly, S1 for a y-

polarized beam is the negative of S2 for an x-polarized beam with an and bn interchanged.  When the incident beam is 

polarized in the vertical x direction and the scattering plane is the horizontal yz plane with φ=±90°, the VV scattering 

amplitude is S1(θ,φ;ρ0,φ0) and the VH scattering amplitude is S2(θ,φ;ρ0,φ0).  When the incident beam is polarized in 

the horizontal y direction, the HV scattering amplitude is S1(θ,φ;ρ0,φ0) and the HH scattering amplitude is 

S2(θ,φ;ρ0,φ0).    

 

3. Approximate Analytic Evaluation of the Sum over m for 0°≪θ≪180° 

The purpose of this Section is to develop a transitional approximation to the scattering amplitudes in the short 

wavelength limit λ≪a and for scattering angles away from 0° and 180° so that the sums over azimuthal modes m in 

Eqs.(4a),(4b) can be evaluated analytically.  The sums over m contain modified Bessel functions Im(Qn), the GLMT 

angular functions mπn
m(θ) and τn

m(θ), sines and cosines of mχ , and the factor [-i/(n+1/2)]m.  The key to the analytical 

evaluation is a series expansion of the GLMT angular functions, which fortunately cancels the 1/(n+1/2)m factor.  This 

approximation is developed in a number of stages as follows.  
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3a. Approximation to the Amplitude of the Associated Legendre Functions 

The angular functions mπn
m(θ) and τn

m(θ) of Eqs.(3a),(3b) are obtained from the associated Legendre functions 

Pn
m[cos(θ)].  For n≫1 and 0°≪θ≪180°, the associated Legendre functions are rapidly oscillatory with a slowly 

varying θ-dependent amplitude.  Their asymptotic expansion in this regime is given by Eq.(8.721.1) on p.962 of [4], 

(which corrects a misprint in Eq.(8.721.1) on p.1002 of the first edition, and whose overall sign has been adjusted to 

the convention used for associated Legendre polynomials in [3]), 

                                                              ∞ 

Pn
m[cos(θ)] = (-1)-m (2/π1/2) Γ(n+m+1) ∑ [Γ(m+k+1/2) / Γ(m-k+1/2)] 

                                                             
k=0  

                   × cos[Φk(θ)] / {k! Γ(n+k+3/2) [2 sin(θ)k+1/2]} ,                                           (6) 

where Γ(x) is the gamma function and  

Φk(θ) = (n+k+1/2)θ + (2k-1)π/4 + mπ/2  .                                                                       (7) 

The dominant periodicity of Pn
m[cos(θ)] is given by Φ0(θ).  The Φk(θ) terms for k≥1 describe progressively smaller 

distortions to the dominant periodicity.  The divergence of the [1/sin(θ)]k+1/2 factor as θ→0°, 180° limits the region in 

which the series can be expected to be an accurate approximation of Pn
m[cos(θ)] to 0°≪θ≪180°.  We will discuss 

how far from 0° and 180° this approximation can be expected to be accurate in Secs.4,5d here and in Sec. 3 of [2].  

In Sec.5 of [2] we also discuss the effects of low partial waves for which Eq.(6) is not expected to be accurate.   

      The first thing that needs to be done is to obtain a judiciously chosen approximation to the magnitude of the 

dominant k=0 oscillation.  This is helped by the fact that the value of Pn
m[cos(θ)] is exactly known at θ=90o, and is 

given by Eq.(12.5.3) of [3].  Correcting a misprint in this equation, (see Eq.(8.6.1) of [5] which uses a different 

convention for Pn
m[cos(θ)]),  

|Pn
m(0)| = (n+m)! / {2n [(n+m)/2]! [(n-m)/2]!}   for  n+m=even 

             = 0  for  n+m=odd  .                                                                                           (8) 

Our consideration of the magnitude of the associated Legendre functions allows us to temporarily set aside the sign 

of Pn
m(0) and study the convergence rate of the k sum in Eq.(6).  Expressing Γ(n+3/2) in terms of factorials, the first 

four terms of Eq.(6) evaluated at θ=90o are 

|Pn
m(0)| ≈ (2/π)1/2 (n+m)! (n)! 22n / [(2n)! (n+1/2) π1/2]  

            ×{1 – (1/2) (m2-1/4) / (n+3/2)  

                   + (1/8) (m2-9/4) (m2-1/4) / [(n+5/2) (n+3/2)]  

                   – (1/48) (m2-25/4) (m2-9/4) (m2-1/4) 

                         / [(n+7/2) (n+5/2) (n+3/2)]}  .                                                                 (9) 

The asymptotic series is expected to converge when m2/n < 1 since each additional term in the series contains one 

additional factor of approximately this ratio.  Consider for example the specific case of n=30, m=6.  The exact value 

of |P30
6(0)| is 1.1297×108 , whereas the first four terms of the asymptotic series give 

|P30
6(0)| ≈ 2.0178×108 (1.0000 – 0.5675 + 0.1473 – 0.0218)   

             = 1.1259×108,                                                                                                         (10) 
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which is only 0.34% lower than the exact value.  The next term in the series is positive, and if it were included as 

well, the comparison would be even closer.  As seen in Eq.(10), the k=0 term alone for n=30, m=6 and θ=90o is 

2.0178×108, which is 78.6% higher than the exact value.  The k≥1 terms in the asymptotic series correct this k=0 

overestimate back toward the exact value. 

      As an alternative to the above approach, van de Hulst used a very accurate one-term approximation to 

Pn
0[cos(θ)] for n≫1 and 0°≪θ≪180° (see Eq.(5.4) of [6] where the approximation is attributed to p.117 of [7]).  

When the van de Hulst approximation is generalized to higher values of m as in Eq.(45) of [8] the result is not the 

first term of the asymptotic series, but is instead 

|Pn
m(θ)| ≈ (n+1/2)m {2 / [π (n+1/2) sin(θ)] }1/2  .                                                            (11) 

For the case of n=30, m=6 considered here, the van de Hulst approximation gives |P30
6(0)| ≈1.1630×108, which is 

2.95% higher than the exact value.  This approximation is remarkably convenient for simplifying the sums over 

azimuthal modes m since the (n+1/2)m factor in Eq.(11) exactly cancels the 1/(n+1/2)m factor in the scattering 

amplitudes of Eqs.(4a),(4b).  Using this approximation for the m=±1 associated Legendre functions, van de Hulst 

obtained an approximation to the Lorenz-Mie scattering functions 

 πn
1(θ) ≈ Πn(θ)                                                                                                                  (12a) 

τn
1(θ) ≈ Tn(θ)  ,                                                                                                                 (12b)  

where for the remainder of this study the functions Πn(θ) and Tn(θ) are defined as (see p.212 of [9])   

Πn(θ) ≡ [1/sin(θ)] {2(n+1/2) / [π sin(θ)]}1/2 sin[(n+1/2)θ – π/4]                                      (13a) 

Tn(θ) ≡ (n+1/2){2(n+1/2) / [π sin(θ)]}1/2 cos[(n+1/2)θ – π/4] .                                        (13b)      

      If all one is interested in is the VV and HH scattering amplitudes, the one-term van de Hulst approximation to 

the GLMT angular functions would be sufficient to obtain close agreement with the exact GLMT co-polarized 

scattered intensities.  But the VH and HV scattering amplitudes will be shown in Sec.4 to vanish at this level of 

approximation.  They first appear only when the k=1 term of the asymptotic series of Eq.(6) is included as well.  

Thus the approximation to the GLMT angular functions required in this study requires more accuracy than the van 

de Hulst one-term approximation is capable of giving.   

      We therefore seek an approximation to the amplitude of the dominant k=0 periodicity of the associated Legendre 

functions that has a structure similar to that of Eq.(11), but that provides a close approximation to the first term of 

the asymptotic expansion of Eq.(6).  The k≥1 terms in the series will then correct this k=0 term back toward the 

exact result.  On the basis of an analytical approximation to the factorials in Eq.(9), we found that the corrected 

amplitude 

|Pn
m(0)| ≈ (n+1/2)m {2 / [π (n+1/2)] }1/2 {1 + (1/2)[m2/(n+1/2)]}                              (14)   

serves our purposes well.  For the case of n=30, m=6, the corrected magnitude is 

|P30
6(0)| ≈  1.1630×108 {1 + 0.5902} = 1.8494×108,                                                 (15)  

which is 8.35% lower than the 2.0178×108 magnitude of Eq.(10).  If yet greater accuracy was required, another term 

proportional to m4/(n+1/2)2 could be added to the last factor in Eq.(14), the coefficient of which would have to be 

obtained by numerical experimentation.  This additional term will be shown in Sec.4 to have only a minor influence, 

and will not be considered further here. 
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3b. Approximation to the GLMT angular functions 

Using Eq.(14) to approximate the magnitude of the dominant k=0 oscillation in Eq.(6), the corrected approximation 

to the 0≤k≤3 terms of the asymptotic expansion of the associated Legendre functions for n≫1 is  

Pn
m[cos(θ)] ≈ (-1)m (n+1/2)m {2 / [π (n+1/2) sin(θ)]}½  

              ×{1 + (1/2)[m2 /(n+1/2)]}{cos[Φ0(θ)]  

                     + [(1/2) (m2-1/4)/(n+3/2)] cos[Φ1(θ)] / sin(θ)  

                     + [(1/8) (m2-9/4) (m2-1/4)/(n+5/2) (n+3/2)] cos[Φ2(θ)] / sin2(θ) 

                     + [(1/48) (m2-25/4) (m2-9/4) (m2-1/4)  

                         / (n+7/2) (n+5/2) (n+3/2)] cos[Φ3(θ)] / sin3(θ)}  ,                                      (16) 

where the dominant periodicity is 

Φ0(θ) = (n+1/2)θ + mπ/2 – π/4  ,                                                                                         (17a) 

and the progressively smaller distortions to it are 

Φ1(θ) = Φ0(θ) + θ + π/2                                                                                                      (17b) 

Φ2(θ) = Φ0(θ) + 2θ + π                                                                                                       (17c) 

Φ3(θ) = Φ0(θ) + 3θ + 3π/2  .                                                                                               (17d) 

      Substituting the k=0,1 terms of the asymptotic expansion for Pn
m[cos(θ)] into Eqs.(3a),(3b), the first few terms of 

the corresponding asymptotic expansion of the GLMT angular functions are 

mπn
m(θ) ≈ Km (C1 m + C3 m

3)     for even m                                                                       (18a)  

              ≈ i Km (D1 m + D3 m
3)  for odd m ,                                                                       (18b) 

where 

Km ≡ (-i)m (n+1/2)m-1                                                                                                           (19) 

Nn(θ) ≡ (n+1/2) sin(θ)                                                                                                         (20) 

and 

C1 = Tn(θ)/Nn(θ)                                                                                                                  (21a) 

D1 = Πn(θ)                                                                                                                           (21b) 

C3 = - (1/2) cos(θ) Πn(θ)/Nn(θ)                                                                                           (22a)   

D3 = (1/2) cos(θ) Tn(θ)/Nn
2(θ) .                                                                                           (22b) 

Similarly,  

 τn
m(θ) ≈ Km (A0 + A2 m

2)    for even m                                                                               (23a) 
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           ≈ i Km (B0 + B2 m
2)  for odd m ,                                                                               (23b)  

where 

A0 = - Πn(θ) Nn(θ)  

        – (3/8) cos(θ) Tn(θ)/Nn(θ)  

        – (1/8) sin(θ) Πn(θ)                                                                                                  (24a) 

B0 = Tn(θ)  

      – (3/8) cos(θ) Πn(θ)  

      + (1/8) sin(θ) Tn(θ)/Nn(θ)                                                                                           (24b) 

A2 = - (1/2) cos(θ) Tn(θ)/Nn(θ)  

        - (1/16) sin(θ) cos(θ) Tn(θ)/Nn
2(θ)  

        + (7/16) cos2(θ) Πn(θ)/Nn(θ)  

        + (1/4) sin2(θ) Πn(θ)/Nn(θ)                                                                                       (25a)  

B2 = - (1/2) cos(θ) Πn(θ)  

        – (1/16) sin(θ) cos(θ) Πn(θ)/Nn(θ)  

         - (7/16) cos2(θ) Tn(θ)/Nn
2(θ) 

        – (1/4) sin2(θ) Tn(θ
 )/Nn

2(θ)  .                                                                                    (25b) 

      These expressions require a number of comments.  For n≫1, the factor of (n+1/2)m-1 in Km of Eq.(19) means that 

the magnitude of the GLMT angular functions rapidly becomes quite large as m increases.  This was seen in the case 

of n=30, m=6 treated above.  This rapid increase in value produces some uncertainty as to the best place to cut off 

the m sums in numerical computations.  But the 1/(n+1/2)m factor in Eqs.(4a),(4b) cancels away the rapid increase in 

the GLMT angular functions.   The point of view taken here is that by allowing this cancellation occur analytically 

rather than numerically where it is more difficult to identify and interpret, one will hopefully obtain a useful 

simplification of the equations.  The various terms of the series expansion of the GLMT angular functions have a 

number of significant properties.  (i) The terms in the series for mπn
m(θ) are proportional to odd powers of m, and the 

terms in the series for τn
m(θ) are proportional to even powers of m.  If k≥2 terms in the asymptotic expansion of 

Pn
m[cos(θ)] had been included, higher powers of m would have occurred in Eqs.(18),(23).  (ii) The function Πn(θ) of 

Eq.(13a) is a factor of (n+1/2) smaller in magnitude than Tn(θ) of Eq.(13b), and so one can assume that Πn(θ)≪ 

Tn(θ) when n≫1 and θ is not near one of the zeros of Tn(θ).  (iii) Equations (21),(22),(24),(25) for mπn
m(θ) and τn

m(θ) 

contain Πn(θ) and Tn(θ)/Nn(θ) as a pair conjugate functions of roughly equal magnitude for even and odd m.  (iv) 

Equations (18)-(25) give the first few terms in a series expansion of the GLMT angular functions in powers of (1/n) 

and (m2/n).  We are assuming here that n≫1 and (m2/n)<1.  As a shorthand, let Tn(θ) be of order (T).  Then Πn(θ) is 

of order (T/n).  Using the k=0,1 terms of the asymptotic series of the associated Legendre functions of Eq.(6), C1 and 

D1 are of order (mT/n) and give the dominant contribution to mπn
m(θ).  The terms C3 and D3 are of order (m3

T/n2) 

and are corrections to the dominant contribution.  Smaller corrections of order (mT/n2), (m3
T/n3), and (m5

T/n3) also 

result from the k=1 term of the asymptotic series, but have been omitted in Eqs.(18)-(22).  One should note that the 

rate of convergence of terms with higher powers of (m2/n) is expected to be significantly slower than those with 
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higher powers of (1/n).  No terms of order (mT/n) or (m3
T/n2), in addition to those given in Eqs.(21),(22), occur if 

either the k=2 term of the asymptotic series or the postulated third term of the k=0 amplitude correction mentioned 

following Eq.(15) are considered.   

      Similarly, using the k=0,1 terms of the asymptotic series of the associated Legendre functions, the first term in 

A0 and B0 of Eqs.(24a),(24b) is of order (T) and is the dominant contribution to τn
m(θ).  The first term of A2 and B2 is 

of order (m2
T/n) and is a correction to the dominant contribution.  The last two terms of A0 and B0 are of order (T/n) 

and are smaller corrections, and the final three terms of A2 and B2 are of order (m2
T/n2) and are yet smaller 

corrections.  The k=1 term of the asymptotic series also gives rise to smaller corrections of order (T/n2), (m2
T/n3), 

(m4
T/n2), and (m4

T/n3) which have been omitted.  No additional terms of order (T), (T/n), (m2
T/n), and (m2

T/n2), in 

addition to those given in Eqs.(24),(25), occur if either the k=2 term of the asymptotic series or the postulated third 

term of the k=0 amplitude correction are considered.  Thus the series expansions of A0, B0, C1, D1, A2, B2, C3, D3 in 

powers of 1/(n+1/2) should be rapidly convergent for n≫1, hopefully requiring only a small number of such terms 

for an accurate evaluation of S1 and S2.   

3c. Analytical Evaluation of the m Sums 

The series expansions of the GLMT angular functions of Eqs.(18)-(25) are now inserted into the sums over m in S1 

and S2 of Eqs.(4a),(4b).  The sums now have the form 

   n  

  ∑(e or o) mp Im(Qn) {cos(mχ) or sin(mχ)} ,                                                                         (26) 
  m=0 

where p is an integer power, Im is a modified Bessel function, Qn and χ are given by Eqs.(5c),(5e), and the sum is over 

either even (e) or odd (o) non-negative values of m.  Since for large Qn, the modified Bessel functions Im become 

nearly exponential in Qn and independent of m, (see Eq.(11.136) of [3]) performing the m sums analytically should 

result in further simplifications of S1 and S2.  All the required sums can be exactly evaluated analytically using the 

generating functions for modified Bessel functions if the upper limit of the sum is changed from n≫1 to infinity (see 

Eqs.(9.1.44),(9.1.45) of [5] and Eq.(11.110) of [3]).  For p=0, one obtains  

 ∞  

∑(o) Im
+(Qn) cos(mχ) = cosh[Qn cos(χ)] cos(χ)                                                                     (27a) 

m=1 

                     ∞  

I1(Qn) + ∑(e) Im
+(Qn) cos(mχ) = sinh[Qn cos(χ)] cos(χ)                                                       (27b) 

                   m=2 

 ∞  

∑(o) Im
-(Qn) sin(mχ) = cosh[Qn cos(χ)] sin(χ)                                                                     (27c) 

m=1 

 ∞  

∑(e) Im
-(Qn) sin(mχ) = sinh[Qn cos(χ)] sin(χ)  .                                                                   (27d) 

m=2 

The sums for p≥1 are evaluated by repeated differentiation of Eqs.(27a)-(27d) with respect to χ.  However, 

progressively higher order derivatives will produce higher powers of the multiplicative factor Qn.  Since Qn is 

proportional to ε of Eq.(5d), as long as ε≪1 these higher order terms will make progressively smaller contributions 

to the scattering amplitudes S1 and S2.   Lastly, it should be noted that the sums over m given above, but with Im
+ 

replaced by Im
- and Im

- replaced by Im
+, cannot be evaluated using the generating function for modified Bessel 

functions.  Thus it appears most fortuitous that the sums appearing in the approximation to S1 and S2 are those which 

can be analytically evaluated. 
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When the sums over m in the scattering amplitudes are exactly analytically evaluated with the upper limit of the 

sum increased to infinity, the various order contributions to the scattering amplitudes are organized differently than 

they were for the GLMT angular functions.  For example, corrections to the GLMT angular functions of order (T/n2) 

and (m2
T/n2) arising from the k=2 term of the asymptotic expansion of the associated Legendre functions of Eq.(6) 

were calculated in Sec.3b.  But corrections to the angular functions of order (m4
T/n2) resulting from the postulated 

third term of the approximation of the dominant k=0 amplitude described following Eq.(15) were not.  When the 

sums over m are evaluated analytically for each of these three corrections to the angular functions, they all produce 

corrections to the scattering amplitudes of order (T/n2).  Since all such corrections of order (mp
T/n2) were not 

calculated here, they will not be considered further.  Thus in Sec.3d, only the terms in the scattering amplitudes of 

order (T) and (T/n) are included.  Specifically, A2 and B2 of Eqs.(25a),(25b) are truncated at  

A2 = - (1/2) cos(θ) Tn(θ)/Nn(θ)                                                                            (28a) 

B2 = - (1/2) cos(θ) Πn(θ)                                                                                     (28b) 

and Eqs.(22a),(22b) are replaced by 

C3 = 0                                                                                                                   (28c) 

D3 = 0 .                                                                                                                 (28d) 

3d. Approximation of the Scattering Amplitudes    

      Substituting the sums over m for 0≤p≤3 into Eqs.(4a),(4b), one obtains expressions for the off-axis scattering 

amplitudes S1(θ,φ;ρ0,φ0) and S2(θ,φ;ρ0,φ0) for the arbitrary off-axis beam position (ρ0, φ0) and scattering plane 

orientation φ, in which the only sum to be evaluated numerically is the sum over partial waves n.  For an incident x-

polarized off-axis localized model Gaussian beam one obtains 

                          ∞  

S1(θ,φ;ρ0,φ0) ≈  ∑ cn Fn bn {(ch) sin(φ) R1(θ) + i (sh) sin(φ) R2(θ) 

                        n=1 

                          + i (ch) cos(φ) R3(θ) + (sh) cos(φ) R4(θ)} 

                             ∞ 

                         + ∑ cn Fn an {(ch) sin(φ) R5(θ) + i (sh) sin(φ) R6(θ) 
                            n=1 

                        + i (ch) cos(φ) R7(θ) + (sh) cos(φ) R8(θ)}  ,                                       (29)  

where (ch) and (sh) are shorthand symbols for 

(ch) ≡ cosh[Qn cos(χ)]                                                                                               (30a) 

(sh) ≡ sinh[Qn cos(χ)] ,                                                                                              (30b) 

and 

R1(θ) = B0 + B2 [1 - Qn
2 sin2(χ)] + i A2 Qn cos(χ)                                                      (31a) 

R2(θ) = A0 + A2 [1 - Qn
2 sin2(χ)] - i B2 Qn cos(χ)                                                       (31b) 

R3(θ) = 2A2 Qn sin(χ)                                                                                                 (31c) 
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R4(θ) = 2B2 Qn sin(χ)                                                                                                 (31d) 

R5(θ) = D1                                                                                                                  (31e) 

R6(θ) = C1                                                                                                                   (31f) 

R7(θ) = C1 Qn sin(χ)                                                                                                    (31g)  

R8(θ) = D1 Qn sin(χ) .                                                                                                  (31h)   

Similarly, 

                        ∞ 

S2(θ,φ;ρ0,φ0) ≈ ∑ cn Fn an {(ch) cos(φ) R1(θ) + i (sh) cos(φ) R2(θ)               

                        n=1 

                          - i (ch) sin(φ) R3(θ) – (sh) sin(φ) R4(θ)} 

                          ∞ 

                      + ∑ cn Fn bn {(ch) cos(φ) R5(θ) + i (sh) cos(φ) R6(θ) 

                         n=1 

                        - i (ch) sin(φ) R7(θ) – (sh) sin(φ) R8(θ)}  .                                             (32)   

As was the case for the exact GLMT scattering amplitudes, the approximation to the scattering amplitudes for an 

incident y-polarized off-axis localized model Gaussian beam is given by the following prescription.  The 

approximate scattering amplitude S2 for a y-polarized beam is identical to S1 for an x-polarized beam with an and bn 

interchanged, and S1 for a y-polarized beam is the negative of S2 for an x-polarized beam with an and bn 

interchanged.  The region of validity of Eqs.(29)-(32) is nominally 0°≪θ≪180°, where the exact interval is expected 

to depend on the specific beam and particle parameters chosen.  This point will be discussed further in Secs.4,5d 

below and in Sec.3 of [2].  In addition, the validity of the series expansion of the GLMT angular functions assumed 

that n≫1.  In Lorenz-Mie theory this corresponds to scattering in the short wavelength limit, λ≪a, where the 

contribution of large partial waves is more important than that of small partial waves (see Sec.12.33 of [9]).   

4. Simplifications for Co-Polarized and Crossed-Polarized Scattering 

We now limit our interest to the scattering geometry described in Sec.1 with the scattering plane horizontal, φ=90°.  

In the first case examined here, the incident Gaussian beam is translated off-axis in the scattering plane with φ0=-

90°.  Substituting into Eqs.(31a)-(31h), the co-polarized scattering amplitudes are given by the Ri(θ) terms with i=1, 

2, 5, 6, 

                     ∞  

  SVV(θ;ρ0) ≈ ∑ cn Fn bn {cosh(Qn) [B0 + B2 (1 - Qn
2) - i A2 Qn] 

                    n=1 

                                    - i sinh(Qn) [A0 + A2 (1 - Qn
2) + i B2 Qn]} 

                    ∞     

                + ∑ cn Fn an [cosh(Qn) D1 - i sinh(Qn) C1]                                (33a)  

                   n=1 

and 
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                       ∞ 

    SHH(θ;ρ0) ≈ ∑ cn Fn an {cosh(Qn) [B0 + B2 (1 - Qn
2) - i A2 Qn] 

                      n=1 

                                 - i sinh(Qn) [A0 + A2 (1 - Qn
2) + i B2 Qn]} 

                      ∞ 

                   + ∑ cn Fn bn [cosh(Qn) D1 - i sinh(Qn) C1]   .                               (33b) 

                      n=1 

             

The cross-polarized scattering amplitudes are 

SVH(θ;ρ0) = SHV(θ;ρ0) = 0  .                                                                              (34) 

The scattering amplitudes SVV(θ) and SHH(θ) were computed for the beam parameters λ = 0.5145 μm, ρ0 = 40μm, φ0 = 

-90°, w0 = 20μm and the particle parameters a = 43.3 μm, M=1.33 of [8] in the φ=90° scattering plane for 0° ≤ θ ≤ 

360°.  The red curves in Figs.1,2 are the exact localized model GLMT scattered VV and HH intensity, respectively, 

and the blue curves are the approximation of Eqs.(33a),(33b), consisting of the dominant term of order (T) and the 

first order correction of order (T/n).  Since the approximation diverges as θ→0°,180° (see for example Fig.3 of [2]), 

it is shown in Figs.1-6 for 1.9° ≤ θ ≤ 178.1°.  In addition, although the approximation was expected in Sec.3a to be 

valid for n≫1, the numerical computations leading to Figs.1-6 used it for all partial waves.  Examination of Figs.1,2 

shows that the magnitude of the approximation for both co-polarization states is in good agreement with that of the 

exact GLMT intensity over many decades for virtually the entire scattering angle interval.  The greatest difference 

between the exact GLMT and approximate intensity occurs when the intensity is the weakest, due to the delicate 

destructive interference of the partial wave contributions.  The phase of the high spatial frequency oscillations in the 

approximate intensity is seen to drift with respect to that of the oscillations in the exact GLMT intensity in a number 

of places, and certainly could affect the extent of destructive interference in the regions of weakest intensity 

mentioned above.  The VV intensity oscillations in Fig.1 are in-phase in the first- and second-order rainbow regions 

and at θ~90°, they appear to be about 90° out of phase at θ~70°, 340°, and they are 180° out of phase at θ~20°, 290°, 

and for the external reflection ripple superimposed on the principal peak of the second-order rainbow.  The situation 

in Fig.2 for the HH intensity is similar.  If a detector array is sufficiently coarse so as to average over the high spatial 

frequency intensity oscillations, the angle-averaged intensity of the approximation matches that of the exact GLMT 

intensity quite well.  But the phase drift of the oscillations in the approximation can have significant consequences, 

as will be seen in [2] where time-domain scattering is considered.     

      As a further approximation to SVV and SHH for an off-axis beam in the scattering plane, the dominant portion of 

SVV and SHH of Eqs.(33a),(33b) of order (T) is,  

                            ∞ 

SVV(θ;ρ0) ≈ ∑ cn Fn bn [Tn(θ) cosh(Qn) + i Πn(θ) Nn(θ) sinh(Qn)]  .                                           (35a) 
                           n=1           

and 

                             ∞  

SHH(θ;ρ0) ≈ ∑ cn Fn an [Tn(θ) cosh(Qn) + i Πn(θ) Nn(θ) sinh(Qn)]  .                                           (35b) 
                           n=1 



Published in Journal of Quantitative Spectroscopy and Radiative Transfer 221 (2018) 273 - 285 

 

 
Fig.1:  Scattered intensity |SVV|

2 as a function of the scattering angle θ for 0°≤θ≤360° for a Gaussian beam with λ=0.5145μm, w0=20μm incident on a 
homogeneous spherical particle with a=43.3μm, M=1.33.  The scattering plane is φ=90°, and the beam is off-axis in the scattering plane with ρ0=40μm, φ0=-90°. 
The scattered intensity |SVH|2 is identically zero.  The exact GLMT result is given by the red curves, and the approximation of Secs.3,4 is given by the blue 
curves. 

 
Fig.2: Scattered intensity |SHH|2 as a function of the scattering angle θ for the same beam, particle, and detector plane parameters as in Fig.1. |SHV|

2 is identically 
zero. The exact GLMT result is given by the red curves, and the approximation of Secs.3,4 is given by the blue curves. 

 
Fig.3: Scattered intensity |SVV|

2 and |SVH|2 as a function of the scattering angle θ for 0°≤θ≤180° for the Gaussian beam and particle of Fig.1.  The scattering plane 
is φ=90°, and the beam is off-axis perpendicular to the scattering plane with off-axis incidence ρ0=40μm, φ0=180°. The exact GLMT result is given by the red 
curves, and the approximation of Secs.3,4 is given by the blue curves. 
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Fig.4: Scattered intensity |SHH|2 and |SHV|

2 as a function of the scattering angle θ for the same beam, particle, and detector plane parameters as in Fig.3. The exact 
GLMT result is given by the red curves, and the approximation of Secs.3,4 is given by the blue curves. 

 
Fig.5: Scattered intensity |S1|

2 and |S2|
2 as a function of the scattering angle θ for 0°≤θ≤360° for the Gaussian beam and particle of Fig.1.  The scattering plane is 

φ=90°, and the beam is off-axis with ρ0=40μm, φ0=-45°. The exact GLMT result is given by the red curves, and the approximation of Secs.3,4 is given by the 
blue curves. 

 
Fig.6: Scattered intensity |S1|

2 and |S2|
2 as a function of the scattering angle θ for the same beam, particle, and detector plane parameters as in Fig.5. The scattering 

plane is φ=90°, and the beam is off-axis with ρ0=40μm, φ0=45°. The exact GLMT result is given by the red curves, and the approximation of Secs.3,4 is given 
by the blue curves. 
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Numerical computations with Eqs.(35a),(35b) gave results that were virtually identical to the results of Figs.1,2 that 

used Eqs.(33a),(33b).  In addition, cosh(Qn) and sinh(Qn) asymptotically approach (1/2) exp(Qn) for Qn≫1.  For the 

example discussed here, the largest partial wave computed [10] is nmax=563 giving Qnmax=9.0, which easily satisfies 

the Qn≫1 condition.  Substituting this further approximation into Eqs.(35a),(35b) one obtains 

                            ∞ 

SVV(θ;ρ0) ≈ ∑ cn Fn exp[(n+1/2) ε] bn [Tn(θ) + i Πn(θ) Nn(θ)]/2                                  (36a)      
                           n=1   

                            ∞ 

SHH(θ;ρ0) ≈ ∑ cn Fn exp[(n+1/2) ε] an [Tn(θ) + i Πn(θ) Nn(θ)]/2  .                              (36b)     
                           n=1  

Equations (36a),(36b) are identical to the simple ray-theory-based approximation of Eqs.(43a),(43b),(47) of [1] with 

the cos[(n+1/2)θ-π/4] term in Tn(θ) of Eqs.(12b),(13b) now replaced in Eqs.(36a),(36b) by (1/2) exp{i[(n+1/2)θ-

π/4]}, and agreeing with the convention used in Sec.5 of [11].   

      We next consider the case when the focused Gaussian beam is translated off-axis perpendicular to the scattering 

plane with φ0=180°.  For co-polarized scattering, substitution into Eqs.(31a)-(31h) gives the Ri(θ) terms with i=1, 5,  

                    ∞ 

 SVV(θ;ρ0) ≈ ∑ cn Fn {bn [B0 + B2 (1 - Qn
2)] + an D1}  ,                                         (37a) 

                  n=1 

                   ∞ 

SHH(θ;ρ0) ≈ ∑ cn Fn {an [B0 + B2 (1 - Qn
2)] + bn D1}  .                                          (37b) 

                  n=1 

For future reference, the dominant order (T) term of SVV and SHH of Eqs.(37a),(37b) is 

                              ∞  

SVV(θ;ρ0)  ≈ ∑ cn Fn bn Tn(θ)  ,                                                                               (38a) 
                             n=1 

                              ∞  

SHH(θ;ρ0)  ≈ ∑ cn Fn an Tn(θ)  .                                                                               (38b) 
                             n=1 

The amplitudes for crossed-polarized scattering include Ri(θ) terms with i=3,7, 

                      ∞ 

 SVH(θ;ρ0) ≈ i ∑ cn Fn Qn (2an A2 + bn C1)   

                      n=1 

                       ∞  

                = -i ∑ cn Fn Qn [an cos(θ) – bn] Tn(θ)/Nn(θ)   ,                                     (39a) 

                      n=1 

and  

                        ∞  

SHV(θ;ρ0) ≈ - i ∑ cn Fn Qn (2bn A2 + an C1)   

                        n=1 
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                        ∞  

                 = - i ∑ cn Fn Qn [an – bn cos(θ)] Tn(θ)/Nn(θ)   .                                   (39b) 

                        n=1 

      Equations (37)-(39) require a number of comments.  (i) It is sensible that the cross-polarized scattering 

amplitudes SVH(θ) and SHV(θ) contain roughly similar amounts of TE (i.e. bn) and TM (i.e. an) contributions.  (ii) The 

dominant term of SVH and SHV of Eqs.(39a),(39b) is of the same order, (T/n), as the first correction to the dominant 

term of SVV and SHH in Eqs.(37a),(37b).  The first order correction to the cross-polarized scattering amplitudes, of 

order (T/n2), was not included for the reasons mentioned in the discussion following Eqs.(27a)-(27d).   This could be 

potentially problematical since our final expressions for τn
m(θ) and mπn

m(θ) are the result of a number of 

approximations that are valid for only large partial waves, n≫1, and small azimuthal modes, m2/(n+1/2)<1.  This 

makes the VH and HV intensities of Eqs.(39a),(39b) potentially more sensitive to the accuracy of all the 

approximations than are the VV and HH intensities of Eqs.(37a),(37b) . (iii) This concern turns out to be 

unwarranted.  Figures 3,4 show the VV, VH and the HV, HH scattered intensities, respectively for the incident beam 

translated off-axis perpendicular to the scattering plane with ρ0=40μm and φ0=180°.  The red curves are the exact 

GLMT polarization-resolved intensities and the blue curves are the approximation of Eqs.(37),(39).  Again, the 

magnitude of the approximation is in good agreement with the magnitude of the exact GLMT intensity for all four 

polarization channels over almost the entire angular interval 0°≤θ≤180°.  But the phase of the high spatial frequency 

oscillations in the approximation drifts with respect to the phase of the oscillations in the exact GLMT intensity.  

(iv) As was the case for φ0=-90° mentioned above, the agreement with the VV and HH intensities is almost identical 

if only the dominant term of order (T) of Eqs.(38a),(38b) is used in the approximation instead of Eqs.(37a),(37b).  

(v)  Equations (38a),(38b) for SVV(θ) and SHH(θ) are identical to the simple ray-theory-based approximation of 

Eqs.(43a),(43b),(48) of [1].  For the input parameters of Figs.1-4, one has w0/a=0.46, and the CPU run time of the 

approximate scattered intensity as a function of θ was found to be almost exactly 1/7 of that for the exact GLMT 

equations.  When w0/a was decreased to 0.20 and 0.10, the CPU run time of the approximation fell to about 1/14 and 

1/60, respectively, of that for the exact GLMT equations, indicating that the approximation is most numerically 

efficient for large particle sizes and narrowly focused beams.   

       Figures 5, 6 show the GLMT scattered intensities (the red and brown curves), and our approximation to them 

using Eqs.(29)-(32) (the blue curves), for the same beam and particle parameters as in Figs.1-4.  The dominant 

|S1|
2=VV intensity and the weaker |S2|

2=VH intensity are shown in Fig.5 for φ=90°, φ0=-45°, and the dominant 

|S2|
2=HH intensity and the weaker |S1|

2=HV intensity are shown in Fig.6 for φ=90°, φ0=45°.  The dominant 

intensities consist of the Ri(θ) terms of Eqs.(31a)-(31h) with i=1, 2, 5, 6, and the weaker intensities consist of i=3, 4, 

7, 8.  The |S1|
2 intensity in Fig.5 is a much closer match to the VV intensity in Fig.1 than it is to the VV intensity in 

Fig.3.  We believe this is due to the fact that the beam is located relatively near the incident Descartes ray position of 

the first- and second-order rainbows on the –y axis.  The weaker |S2|
2 intensity in Fig.5, contrary to the VH intensity 

in Fig.3, clearly exhibits the first-order and second-order TE rainbows, and appears quite similar to the dominant 

|S1|
2 intensity, except for being a number of orders of magnitude smaller.  The |S2|

2 intensity in Fig.6 is a much closer 

match to the HH intensity in Fig.2 than it is to the HH intensity in Fig.4.  The weaker |S1|
2 intensity also exhibits the 

first- and second-order TE rainbows.  The reason for this will be discussed below.  These results are similar to those 

that have recently appeared in Figs.7,8 of [12] for an incident elliptical Gaussian beam.  

      The cross-polarized scattering amplitudes may be further simplified for an arbitrary off-axis location of the 

Gaussian beam by substituting φ=90° for the horizontal scattering plane and Eq.(5c) for Qn into Eqs.(29),(32), 

extracting the order (T/n) term of SVH and SHV, and then comparing the result to the order (T) term of SVV and SHH.  In 

this approximation, one obtains 

SVH(θ;ρ0,φ0) ≈ -iε cos(φ0) [ SVV(θ) - SHH(θ) cos(θ)] / sin(θ)                              (40a)   

SHV(θ;ρ0,φ0) ≈ -iε cos(φ0) [SVV(θ) cos(θ) - SHH(θ)] / sin(θ)  .                            (40b) 
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The factor of ε in Eqs.(40a),(40b) exactly matches the size of the amplitudes predicted on the basis of the circular 

symmetry breaking and the constraints imposed by Maxwell’s equations in Secs.4d, 4e of [1].  At θ=90° the 

amplitude SVH is purely TE-polarized and SHV is purely TM-polarized.  In addition, SVH and SHV are proportional to 

SVV-SHH for θ≈0° and are proportional to SVV+SHH for θ≈180°.  Higher-order corrections to SVV and SHH will lead to 

terms in the expressions for SVH and SHV having higher powers of ε.  The relationship between the co-polarized and 

cross-polarized scattering amplitudes of Eqs.(40a),(40b) explains why the numerical convergence for the exact 

GLMT scattering amplitudes SVV and SHH was achieved in [13] with mmax=10 for the sum over azimuthal modes m, 

while mmax=20 was required for convergence of SVH and SHV.  Since SVV and SHH almost totally destructively interfere 

with each other for θ≈0° and θ≈180°, they must be evaluated with great precision in order for their difference to 

achieve numerical convergence of the much smaller SVH and SHV.  In addition, Eqs.(40a),(40b) explain why the 

cross-polarized channels exhibit the TE-polarized first and second order rainbows so frequently. Since the TE-

polarized SVV and the TM-polarized SHH are present with roughly equal magnitudes, as long as the TE-polarized 

rainbow with its prominent main peak dominates in SVV over the TM-polarized rainbow with the main peak absent in 

SHH, the TE rainbows will be visible in both cross-polarized amplitudes.  This point will be pursued further in the 

context of the Debye series in [2].    

5. Approximation for θ≈0° and θ≈180° 

The asymptotic expansion of the associated Legendre functions used in Sec.3a is a transitional approximation valid 

in the range of scattering angles 0°≪θ≪180°.  But it is not valid for other ranges such as θ≈0° and θ≈180°.  A 

different transitional approximation must be employed in these other regions instead, the details of which are 

described in this section.  The use of different approximations in different angular intervals can be avoided by using 

a uniform approximation which smoothly interpolates between one region of θ and another.  This mathematically 

more elegant, but more complicated [14], approach will not be pursued here.  As was mentioned in Sec.2c of [1], 

SVV, SHH, SVH, and SHV are individually proportional to the co-polarized and cross-polarized electric fields for 

0°≪θ≪180°.  But their intrinsic φ-dependence requires that they be combined together at θ=0° and θ=180° in order 

to eliminate that φ-dependence and generate the co-polarized and cross-polarized electric fields.  The transition 

between these two regimes is given in this section for near-forward and near-backward scattering.   

5a.  Near-Forward Scattering  

The GLMT angular functions πn
m(θ) and τn

m(θ) are well-approximated in the near-forward direction by [8] 

mπn
0(θ) = 0  for m = 0                                                                                            (41a) 

mπn
m(θ) ≈ (n+1/2)m [(n+1/2)/2] [Jm-1(Θn) + Jm+1(Θn)]  for m ≥ 1                           (41b) 

τn
0(θ) ≈ - (n+1/2) J1(Θn)  for m = 0                                                                        (41c)  

τn
m(θ) ≈ (n+1/2)m [(n+1/2)/2] [Jm-1(Θn) – Jm+1(Θn)]  for m ≥ 1 ,                             (41d) 

where 

Θn ≡ (n+1/2) θ .                                                                                                       (42) 

and Jm(Θn) is a Bessel function.  When this approximation to the GLMT angular functions is substituted into 

Eqs.(4a),(4b) for S1 and S2, the factor of (n+1/2)m in the angular function approximation again cancels the factor of 

[1/(n+1/2)]m in Eqs.(4a),(4b).  For θ ≈ 0°, the unit vectors uθ and uφ become  

uθ ≈ cos(φ) ux + sin(φ) uy                                                                                                                  (43a) 

uφ ≈ -sin(φ) ux + cos(φ) uy  .                                                                        (43b) 
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The far-zone scattered electric field of Eq.(2a) then becomes 

Escatt(r,θ,φ;ρ0,φ0) ≈ [iE0/(kr)] exp(ikr) {[S2(θ,φ;ρ0,φ0) cos(φ) + S1(θ,φ;ρ0,φ0) sin(φ)] ux  

                              + [S2(θ,φ;ρ0,φ0) sin(φ) – S1(θ,φ;ρ0,φ0) cos(φ)] uy}  .         (44) 

The approximate GLMT angular functions of Eqs.(41a)-(41d) are substituted into the scattering amplitudes of 

Eqs.(4a),(4b), and the result into Eq.(44).  At this point one encounters three sums over m that can be exactly 

analytically evaluated using the Neumann addition theorem for Bessel functions (see pp.358-359 of [15]) and the 

Graf addition theorem for Bessel functions (see pp.359-361 of [15]), extended to modified Bessel functions 

                                                              ∞ 

J0(An) = J0(Θn) I0(Qn) + 2 ∑ (-i)m Jm(Θn) Im(Qn) cos(mχ)                                        (45a) 
                                                            m=1 

                                                                    ∞ 

 - X J2(An) = J0(Θn) I2(Qn) + ∑ (-i)m Jm(Θn) [Im-2(Qn) + Im+2(Qn)] cos(mχ)              (45b) 
                                                                  m=1 

                          ∞ 

Y J2(An) = ∑ (-i)m Jm(Θn) [Im-2(Qn) – Im+2(Qn)] sin(mχ),                                          (45c) 
                        m=1 

where 

An ≡ (n+1/2) [θ2 – ε2 + 2i θε cos(χ)]1/2                                                                                                      (46a) 

X =  [θ2 cos(2χ) – ε2 + 2i θε cos(χ)] / [θ2 – ε2 + 2i θε cos(χ)]                                  (46b)  

Y = - [θ2 sin(2χ) + 2i θε sin(χ)] / [θ2 – ε2 + 2i θε cos(χ)] ,                                       (46c)   

with X and Y satisfying  

X
2 + Y2 = 1  .                                                                                                            (46d) 

It should be noted that in Eq.(45b) when the sum of the two modified Bessel functions is replaced by their 

difference, and in Eq.(45c) when the difference between the two Bessel functions is replaced by their sum, the sum 

over azimuthal modes cannot be evaluated using the Graf addition formula.  It again appears to be fortuitous that the 

sums over m appearing in our approximation to the scattered electric fields are those that can be evaluated 

analytically.   

      The near-forward scattered electric field for an x-polarized incident Gaussian beam with an arbitrary off-axis 

location is then  

                                                                                             ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈ [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2)  
                                                                                           n=1  

                  ×{(an + bn) J0(An) - (an – bn) J2(An) [X cos(2φ0) + Y sin(2φ0)]} ux 

                                                                             ∞ 

                  + [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2)  

                                                                            n=1 
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                             × (an – bn) J2(An) [Y cos(2φ0) - X sin(2φ0)] uy  .                              (47)   

The x component of Eq.(47) is EVV and the y component is EVH.  Similarly, for a y-polarized incident Gaussian 

beam with an arbitrary off-axis location, the near-forward scattered electric field is 

                                                                                             ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈
  [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2)                                         

                                                                                           n=1 

                                             × (an – bn) J2(An) [Y cos(2φ0) – X sin(2φ0)] ux 

                                                                           ∞ 

                 + [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2) 

                                                                         n=1 

                           ×{(an + bn) J0(An) + (an – bn) J2(An) [X cos(2φ0) + Y sin(2φ0)]} uy  .   (48)        

The x component of Eq.(48) is EHV and the y component is EHH.  The terms proportional to (an+bn) represent the 

contribution of diffraction plus the geometric processes of external reflection, transmission, etc., averaged over the 

TE and TM polarizations.  The VV- and HH-polarized electric fields with an+bn=1 in the context of the Debye series 

are of the form expected for diffraction by a circular obstacle as described in the Appendix.  The terms proportional 

to (an-bn) represent the contribution of the geometric processes of external reflection, transmission, etc., for the 

difference between the TE and TM polarizations.  Thus diffraction does not contribute to VH and HV scattering. 

Equations (47),(48) for our approximations agree with the exact GLMT equations of Eqs.(22),(24) of [1] in the θ=0° 

limit.   

5b.  Near-Backward Scattering 

The GLMT angular functions πn
m(θ) and τn

m(θ) are well-approximated in the near-backward direction by [8] 

mπn
0(ξ) = 0  for m = 0                                                                                            (49a) 

mπn
m(ξ) ≈ (-1)n+m (n+1/2)m [(n+1/2)/2] [Jm-1(Ξn) + Jm+1(Ξn)]  for m ≥ 1                (49b) 

τn
0(ξ) ≈ (-1)n (n+1/2) J1(Ξn)  for m = 0                                                                   (49c)  

τn
m(ξ) ≈ - (-1)n+m (n+1/2)m [(n+1/2)/2] [Jm-1(Ξn) – Jm+1(Ξn)]  for m ≥ 1                 (49d) 

where 

ξ = 180° - θ                                                                                                            (50a) 

Ξn = (n+1/2) ξ  .                                                                                                     (50b) 

When this approximation to the GLMT angular functions is substituted into Eqs.(4a),(4b), the factor of (n+1/2)m in 

the angular function approximation again cancels the factor of [1/(n+1/2)]m in Eqs.(4a),(4b).  For θ ≈ 180°, the unit 

vectors uθ and uφ become  

uθ ≈ - cos(φ) ux - sin(φ) uy                                                                                        (51a) 

uφ ≈ - sin(φ) ux + cos(φ) uy  .                                                                                   (51b) 

The scattered electric field of Eq.(2a) then becomes 
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Escatt(r,θ,φ;ρ0,φ0) ≈ [iE0/(kr)] exp(ikr){[- S2(θ,φ;ρ0,φ0) cos(φ) + S1(θ,φ;ρ0,φ0) sin(φ)] ux  

                                        - [S2(θ,φ;ρ0,φ0) sin(φ) + S1(θ,φ;ρ0,φ0) cos(φ)] uy}  .          (52) 

The approximate GLMT angular functions of Eqs.(49a)-(49d) are substituted into the scattering amplitudes of 

Eqs.(4a),(4b), and the result is substituted into Eq.(52).  One then encounters three new sums over m which, 

fortunately, are the complex conjugates of Eqs.(45a)-(45c).  The near-backward scattered electric field for an x-

polarized incident Gaussian beam is then 

                                                                                            ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈ [iE0/(kr)] exp(ikr) ∑ (-1)n Fn (n+1/2)  
                                                                                           n=1  

                                              ×{(an + bn) J2(An*) [X* cos(2φ0) + Y* sin(2φ0)] - (an – bn) J0(An*)} ux 

                                                                           ∞ 

                  - [iE0/(kr)] exp(ikr) ∑ (-1)n Fn (n+1/2)  

                                                                          n=1 

                                 × (an + bn) J2(An*) [Y* cos(2φ0) - X* sin(2φ0)]} uy  ,          (53)   

where the asterisk denotes complex conjugation.  As before, the x component of Eq.(53) is EVV and the y component 

is EVH.  Similarly, for a y-polarized incident beam, the near-backward scattered electric field is 

                                                                                                ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈
  - [iE0/(kr)] exp(ikr) ∑ (-1)n Fn (n+1/2)                                          

                                                                                                n=1 

                                    × (an + bn) J2(An*) [Y* cos(2φ0) – X* sin(2φ0)]} ux 

                                                                          ∞ 

                 - [iE0/(kr)] exp(ikr) ∑ (-1)n Fn (n+1/2) 

                                                                  n=1 

                     × {(an + bn) J2(An*) [X* cos(2φ0) + Y* sin(2φ0)] + (an – bn) J0(An*) } uy  .   (54) 

The x component of Eq.(54) is EHV and the y component is EHH.  Equations (53),(54) for our approximation agree 

with the exact GLMT equations of Eqs.(29),(31) of [1] in the θ=180° limit. 

5c.  Simplification for Incidence in the Scattering Plane 

The scattering plane is here taken as φ=±90°with θ≥0 rather than φ=90° with θ being both positive and negative.  

The beam is translated with φ0=-90° for off-axis incidence in the scattering plane.  For θ ≈ 0°, the quantities An, X, 

and Y of Eqs.(46a)-(46c) simplify to                  

An = (n+1/2) (iε ∓ θ)                                                                                                (55a) 

X =  1                                                                                                                        (55b)    

Y = 0  .                                                                                                                      (55c)  

For θ ≈ 180°, An*, X*, and Y* simplify to                  

An* = (n+1/2) (- iε ∓ ξ)                                                                                                                                          (56a)  
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X* =  1                                                                                                                     (56b)    

Y* = 0  .                                                                                                                   (56c)  

5d.  Simplification for Incidence Perpendicular to the Scattering Plane 

The scattering plane is again φ=±90° and the beam is translated with φ0=180° for off-axis incidence perpendicular to 

the scattering plane.  For θ ≈ 0°, An, X, and Y simplify to                  

An = (n+1/2) (θ2 - ε2)1/2                                                                                                                                  (57a) 

X =  - (θ2 + ε2 ) / (θ2 - ε2)                                                                                    (57b)    

Y = ± 2i θε / (θ
2 - ε2)  .                                                                                         (57c) 

Care is needed when evaluating the products X J2(An) and Y J2(An) at θ=ε since the both denominator of X and Y and 

the Bessel function J2(An) simultaneously vanish.  The product of the two remains finite with 

X J2(An) = ε2/4                                                                                                     (58a) 

Y J2(An) = ± iε2/4  .                                                                                              (58b)  

For θ ≈ 180°, An*, X*, and Y* simplify to                  

An* = (n+1/2) (ξ2 - ε2)1/2                                                                                        (59a) 

X* =  - (ξ2 + ε2 ) / (ξ2 - ε2)                                                                                    (59b) 

Y* = ∓ 2i ξε / (ξ
2 - ε2)  .                                                                                        (59c) 

When ξ = ε, the potential divergence discussed above again cancels and  

X* J2(An*) = ε2/4                                                                                                   (60a) 

Y* J2(An*) = ∓ iε2/4 .                                                                                            (60b) 

      The approximation of Sec.3 was said to be valid only for the region 0°≪θ≪180°.  This is the region in which the 

Legendre functions are oscillatory, and avoids the θ≈0° and θ≈180° regions where they monotonically increase as 

Bessel functions of suitably small arguments.  Numerical computations for both in-plane scattering for φ=90°, φ0=-

90° in Figs.1,2 and out-of-plane scattering for φ=90°, φ0=180° in Figs.3,4 show that the 0°≪θ≪180° approximation 

of Sec.3 closely matches the exact GLMT results down θ~1° or less.  This seemingly paradoxical result may be 

understood as follows.  It was seen in Eqs.(47),(48) that the contribution of the n partial wave to diffraction is 

proportional to J0(An), with An given by Eq.(55a) for in-plane scattering and by Eq.(57a) for out-of-plane scattering.  

As was mentioned in Sec.4, the largest partial wave for the numerical example considered here is nmax=563.  Since 

large partial waves near nmax are expected to dominate in-plane scattering, the first zero of J0(Anmax), which may be 

very qualitatively taken as a measure of the transition from the monotonic to oscillatory behavior of J0, occurs for 

θ~0.24°.  For out-of-plane scattering, J0(An) changes from a modified Bessel function to a regular Bessel function for 

all partial waves when An=0, or θ=ε=0.92°.  Considering this change of Bessel function type to also be characteristic 

of the transition from monotonic to oscillatory behavior, both of these crude angular estimates are comparable to 

observed region of validity of the 0°≪θ≪180° approximation of Sec.3 down to θ~1°.  A similar argument can also 

be made in the vicinity of back-scattering.  
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6. Summary 

The circular symmetry of an incident plane wave or an on-axis Gaussian beam with respect to the center of a 

spherical particle permits the scattered electric and magnetic fields to be expressed as a sum over partial waves n.  

However, translating the Gaussian beam off-axis by the distance ρ0 in the φ0 direction breaks the circular symmetry.  

An inevitable consequence of this is that the scattered electric and magnetic fields must now be expressed as a 

double sum over partial waves n and azimuthal modes m.  We have obtained a pair of transitional approximations to 

the GLMT scattering amplitudes S1(θ,φ;ρ0,φ0) and S2(θ,φ;ρ0,φ0) for which we were able to analytically evaluate all 

the sums over azimuthal modes in the n≫1 limit, both for θ≈0° and θ≈180°, as well as for 0°≪θ≪180°.   

      The key to the approximation was obtaining a series expansion of the GLMT angular functions τn
m(θ) and 

mπn
m(θ), so that each term of the series cancelled an important contribution to the m-dependence of the beam shape 

coefficients.  Thus a number of cancellations in off-axis GLMT and which had previously occurred hidden from 

view in the details of numerical computations, are now allowed to take place in plain sight analytically.  This 

provides an arguably simpler and numerically more stable set of formulas for the scattering amplitudes S1 and S2 in 

the small wavelength limit.  The approximation developed here cannot be expected to be valid for all beams and all 

scattering particles.  It is appropriate only for large particles, 2πa/λ≫1, and weakly focused Gaussian beams, s≪1.  

Within this region of applicability, the approximation was found to provide a close fit to the exact GLMT results for 

a number of off-axis locations of the incident beam.  However, only the case of z0=0 was considered here.  The 

approximation derived in this study should be extendable to all values of z0.  

      It is presently uncertain as to whether the sums over azimuthal modes can be exactly evaluated analytically only 

for an off-axis Gaussian beam, or whether they can be exactly evaluated for more general beam types, such as an 

off-axis zero-order Bessel beam, for which the on-axis beam shape coefficients are known exactly [16-19].  The key 

to this is whether the (n+1/2)m factors in the GLMT angular functions can be either exactly or approximately 

cancelled away by the vector spherical harmonic translation coefficients [20-24] that are used to convert on-axis 

beam shape coefficients into off-axis beam shape coefficients.  This topic deserves further study. 

Appendix:  Diffraction of an Off-Axis Gaussian Beam by a Circular Aperture 

Consider a scalar Gaussian beam of constant field half-width w0 and centered at (ρ0,φ0) incident on a circular 

aperture of radius a whose center coincides with the origin of the coordinate system.  A crude model of the non-

spreading beam considered in [1] is  

Ebeam(ρ',φ';ρ0,φ0) = E0 exp(ikz) exp[-s2 (kρ')2] exp(-ρ0
2/w0

2)  

                               × exp[ε (kρ') cos(φ'-φ0)]  .                                                         (A1) 

The far-zone Fraunhofer limit of the Fresnel-Kirchhoff approximation to diffraction at the position (r,θ,φ) on the 

viewing screen is (see section 8.3.3 of [25]) 

                                              a          2π 

Ediffracted(r,θ,φ) = - ik2/(2πkr) ∫ ρ' dρ' ∫ dφ' exp[-ikρ' sin(θ) cos(φ'-φ)] 

                                            ρ'=0       φ'=0 

                                  × Ebeam(ρ',φ';ρ0,φ0)  .                                                                (A2) 

The integral over φ' in Eq.(A2) can be evaluated analytically using the following procedure.  (i) One uses sin(θ) ≈ θ 

for small θ in the near-forward direction. (ii) One then expands the factor exp[-ikρ' sin(θ) cos(φ'-φ)] as a Fourier 

series of azimuthal modes m, giving (see p.585, Eq.(11.1.4) of [3] and p.299 of [9]) 

                                                        ∞ 

exp[-ikρ'θ cos(φ'-φ)] = ∑ (-i)m Jm(kρ'θ) exp[im(φ'-φ)]  .                                             (A3) 
                                                     m=-∞  
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 (iii) One then evaluates the φ' integral term-by-term using the change of variables 

ζ = φ' – φ                                                                                                                     (A4) 

and (see p.587, Eq.(11.1.16.b) and p.615, Eq.(11.5.14) of [3])   

                                 2π 

Im(x) = (1/2π) ∫ dζ exp[x cos(ζ)] exp(imζ)  .                                                                (A5) 
                                ζ=0 

(iv) One then evaluates the m sum analytically using the Neumann addition function for Bessel functions of 

Eq.(45a).  The diffracted field then reduces to the one-dimensional integral 

                                                                    ka 

Ediffracted(r,θ,φ;ρ0,φ0) = [-iE0/(kr)] exp(ikz) ∫ (kρ') d(kρ') 

                                                                   kρ'=0 

                                              × exp[-s2 (kρ')2] exp(-ρ0
2/w0

2) J0(A)  ,                       (A6) 

where  

Q ≡ (kρ') ε                                                                                                                (A7)  

in analogy to Eq.(5c), 

Θ ≡ (kρ') θ                                                                                                                (A8) 

in analogy to Eq.(42), 

A = (kρ') [θ2 – ε2 + 2i θε cos(χ)]1/2                                                                           (A9) 

in analogy to Eq.(46a), and 

χ ≡ φ – φ0  .                                                                                                              (A10) 

If one was interested instead in diffraction by a circular obstacle of radius a, Babinet’s principle (see Sec.9.7 of [26]) 

is used to replace the leading factor of –i in Eq.(A6) by +i.   

      The portion of the EVV and EHH in the near-forward direction in Eqs.(47),(48) proportional to J0(An) is our 

approximation to diffraction of an off-axis Gaussian beam by a spherical particle for the Debye series assignment 

(see pp.209-210 of [9] and [27]) an = bn = 1/2.  Using van de Hulst’s localization principle (see pp.208-209 of [9]) in 

Eq.(A6) to approximately convert the integral over the impact parameter kρ' into a sum over partial waves n via 

kρ'→(n+1/2), the result of Eq.(A6) is identical to the circular obstacle diffraction pattern of Eqs.(47),(48).  The 

analysis of Eq.(A6) will be given in [2]. 
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