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Abstract 

Diffraction in the near-forward direction is examined for the localized model of an off-axis focused Gaussian beam 

scattered by a sphere when the beam is translated off-axis either in the scattering plane or perpendicular to it.  The 

results are analyzed using the Fraunhofer diffraction approximation.  We also obtain various Debye series 

contributions to the exact GLMT co-polarized VV and HH scattering amplitudes and cross-polarized VH and HV 

scattering amplitudes, and discuss their interpretation.  Time-domain scattering is also considered for both the exact 

GLMT scattering amplitudes and our approximation to them, for which the sum over azimuthal modes is evaluated 

analytically.  It is found that although the approximation accurately reproduces the overall magnitude of the 

scattered intensity, it is not as accurate in reproducing the phase of high-frequency oscillations in the intensity. 

Key words: Mie theory, generalize Lorenz-Mie theory, polarization-resolved scattering, cross-polarized scattering, 

diffraction, time-domain scattering.      

1. Introduction 

This contribution is the third and final installment in our study of polarization-resolved scattering of an off-axis 

Gaussian beam by a single homogeneous dielectric spherical particle [1,2].  A far-zone detector array is located in 

the horizontal scattering plane which contains the center of the sphere.  The polarization direction at the center of the 

incident beam’s focal waist is either vertical, V, or horizontal, H.  Similarly, a polarizing filter placed in front of the 

detectors passes either vertically polarized scattered light, V, or horizontally polarized light, H.  We have previously 

shown that only VV and HH co-polarized scattering occur if the incident beam is a plane wave, an on-axis Gaussian 

beam, or a Gaussian beam translated off-axis in the scattering plane.  But if an incident Gaussian beam is translated 

off-axis perpendicular to the scattering plane, VH and HV cross-polarized scattering occur in addition to co-

polarized scattering.  

      Using the localized model of a mildly-focused off-axis Gaussian beam, the exact generalized Lorenz-Mie theory 

(GLMT) polarization-resolved scattering amplitudes, SVV(θ,φ), SVH(θ,φ), SHV(θ,φ), SHH(θ,φ), were obtained in [1].  

They contain a sum over partial waves n and azimuthal modes m.  In [2] we obtained an accurate approximation to 

the scattering amplitudes in the large particle and moderately focused beam limit for which the sum over azimuthal 
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modes can be evaluated analytically.  In this manuscript we investigate additional features of polarization-resolved 

scattering, both in the frequency-domain and in the time-domain. 

The body of the manuscript proceeds as follows.  In Sec.2, for convenience, we repeat the results of [1,2] that 

will be used here.  In Sec. 3 we examine diffraction for near-forward scattering, and analyze the differences in the 

diffraction signature when the incident beam is translated off-axis in the scattering plane and perpendicular to it.  

Our analysis is based on the close analogy between GLMT-Debye-series diffraction by a sphere and Fraunhofer 

diffraction by a circular obstacle [3,4].  In Sec.4 we comment on the principal features of the p=0,1,2,3 terms of the 

Debye series expansion of the exact GLMT scattering amplitudes, corresponding to diffraction-plus-external 

reflection of the partial waves, transmission, and transmission following one or two internal reflections.  In Sec.5, 

we compute time-domain scattering for both the exact GLMT scattering amplitudes, and for our approximation to 

them.  We find that although the time-domain signature of the exact GLMT scattering amplitudes behaves as 

expected, the time-domain signature of our approximation contains a number of artifacts and distortions.  This is 

because our approximation renders the overall magnitude of the scattered intensity correctly, but fails to faithfully 

reproduce the phase of high-frequency oscillations in the intensity.  Lastly, our final conclusions are stated in Sec.6.          

2. Off-Axis Scattering by a Focused Gaussian Beam 

The incident Gaussian beam has peak electric field strength E0, wavelength λ, wave number k=2π/λ, angular 

frequency ω, implicit time dependence exp(-iωt), and confinement parameter 

 

s = λ/(2πw0)  .                                                                                                                         (1)  

 

The beam’s electric field half-width is w0, and the center of the beam’s focal waist is located at (ρ0,φ0) in the z=0 

plane whose origin coincides with the center of the scattering particle.  The homogeneous spherical particle has 

radius a and refractive index M.  The r→∞ far-zone scattered electric and magnetic fields are 

Escatt(r,θ,φ)  = (iE0/kr) exp(ikr) [S2(θ,φ) uθ - S1(θ,φ) uφ]                                                       (2a)  

Bscatt(r,θ,φ) = (iE0/ckr) exp(ikr) [S1(θ,φ) uθ + S2(θ,φ) uφ]  ,                                                   (2b) 

where φ is the azimuthal angle of the scattering plane with respect to the xz plane, θ is the scattering angle in that 

plane, and c is the speed of light.  If the electric field of the localized model of an incident Gaussian beam is x-

polarized at the center of its focal waist, the far-zone GLMT scattering amplitudes are [1] 

                           ∞ 

S1(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) bn I1(Qn) τn
0(θ) sin(φ0) 

                          n=1 

              ∞                            n 
        + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m τn

m(θ) × [Im
-(Qn) sin(mχ) cos(φ0) + Im

+(Qn) cos(mχ) sin(φ0)] 
             n=1                         m=1  
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              ∞                            n 
        + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m mπn

m(θ) × [ Im
+(Qn) sin(mχ) cos(φ0) + Im

-(Qn) cos(mχ) sin(φ0)]             (3a) 
             n=1                         m=1  
and 

                           ∞ 

S2(θ,φ;ρ0,φ0) = i ∑ cn Fn (n+1/2) an I1(Qn) τn
0(θ) cos(φ0) 

                          n=1 

            ∞                             n 
       + i ∑ cn Fn (n+1/2) an ∑ [-i/(n+1/2)]m τn

m(θ) × [Im
+(Qn) cos(mχ) cos(φ0) - Im

-(Qn) sin(mχ) sin(φ0)] 
            n=1                          m=1  
             ∞                            n 
       + i ∑ cn Fn (n+1/2) bn ∑ [-i/(n+1/2)]m mπn

m(θ) × [Im
-(Qn) cos(mχ) cos(φ0) - Im

+(Qn) sin(mχ) sin(φ0)]  ,             (3b) 
           n=1                           m=1  
where  

cn ≡ (2n+1)/[n(n+1)]                                                                                                      (4a) 

Fn ≡ exp(- ρ0
2/w0

2) exp[-s2 (n+1/2)2]                                                                             (4b) 

Qn ≡ (n+1/2) ε                                                                                                                (4c) 

ε ≡ 2sρ0/w0                                                                                                                     (4d) 

χ ≡ φ – φ0  ,                                                                                                                    (4e) 

Im
±(Qn) ≡ Im-1(Qn) ± Im+1(Qn)  ,                                                                                       (4f) 

Im(Qn) is a modified Bessel function, and an and bn are the transverse magnetic (TM) and transverse electric (TE) 

partial wave scattering amplitudes of Lorenz-Mie theory, respectively.  If the electric field of the incident Gaussian 

beam is instead y-polarized at the center of its focal waist, S2 is identical to S1 for an x-polarized beam with an and bn 

interchanged, and S1 is the negative of S2 for an x-polarized beam with an and bn interchanged.  When the incident 

beam is polarized in the vertical x direction and the scattering plane is the horizontal yz plane with φ=±90°, the VV 

scattering amplitude is S1(θ,φ;ρ0,φ0) and the VH scattering amplitude is S2(θ,φ;ρ0,φ0).  When the incident beam is 

polarized in the horizontal y direction, the HV scattering amplitude is S1(θ,φ;ρ0,φ0) and the HH scattering amplitude 

is S2(θ,φ;ρ0,φ0). 

In [2] we developed an accurate transitional approximation for 0°≪θ≪180° to the co-polarized and cross-

polarized scattering amplitudes of Eqs.(3a),(3b) if the particle is large, 2πa/λ≫1, and the beam is mildly focused, 

s≪1.  When the beam is translated off-axis in the φ0=-90° direction in the φ=90° horizontal scattering plane, the 

scattering amplitudes were found to be approximately    

                   ∞  

SVV(θ;ρ0) ≈ ∑ cn Fn bn {cosh(Qn) [B0 + B2 (1 - Qn
2) - i A2 Qn] - i sinh(Qn) [A0 + A2 (1 - Qn

2) + i B2 Qn]}  
                  n=1 

                + ∑ cn Fn an [cosh(Qn) D1 - i sinh(Qn) C1]                                                (5) 

 and SHH(θ;ρ0) was obtained from Eq.(5) by interchanging an and bn, where 
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A0 = - Πn(θ) Nn(θ) – (3/8) cos(θ) Tn(θ)/Nn(θ) – (1/8) sin(θ) Πn(θ)                              (6a) 

B0 = Tn(θ) – (3/8) cos(θ) Πn(θ) + (1/8) sin(θ) Tn(θ)/Nn(θ)                                           (6b) 

C1 = Tn(θ)/Nn(θ)                                                                                                           (6c) 

D1 = Πn(θ)                                                                                                                    (6d) 

A2 = - (1/2) cos(θ) Tn(θ)/Nn(θ)                                                                                      (6e) 

B2 = - (1/2) cos(θ) Πn(θ)   .                                                                                           (6f) 

The angular functions in Eqs.(6a)-(6f) are 

Πn(θ) ≡ [1/sin(θ)] {2(n+1/2) / [π sin(θ)]}1/2 sin[(n+1/2)θ – π/4]                                  (7a) 

Tn(θ) ≡ (n+1/2){2(n+1/2) / [π sin(θ)]}1/2 cos[(n+1/2)θ – π/4] .                                    (7b)      

The cross-polarized scattering amplitudes SVH(θ;ρ0) and SHV(θ;ρ0) were identically zero.   

      If the beam is translated off-axis in the φ0=180° direction perpendicular to the horizontal φ=90° scattering plane, 

the co-polarized scattering amplitudes were found to be approximately     

                    ∞ 

 SVV(θ;ρ0) ≈ ∑ cn Fn {bn [B0 + B2 (1 - Qn
2)] + an D1} ,                                                   (8) 

                   n=1 

and SHH(θ;ρ0) was obtained from Eq.(8) by interchanging an and bn.  The cross-polarized scattering amplitudes were 

                       ∞  

SVH(θ;ρ0) ≈ -i ∑ cn Fn Qn [an cos(θ) – bn] Tn(θ)/Nn(θ)                                                     (9a) 
                      n=1 

                        ∞  

SHV(θ;ρ0) ≈  - i ∑ cn Fn Qn [an – bn cos(θ)] Tn(θ)/Nn(θ)   .                                               (9b) 
                        n=1 

The dominant contribution to the co-polarized scattering amplitudes of Eq.(8) using only B0=Tn(θ), is related to the 

cross-polarized scattering amplitudes of Eqs.(9a),(9b) by  

SVH(θ:ρ0,φ0) ≈ -iε cos(φ0) [ SVV(θ) - SHH(θ) cos(θ)] / sin(θ)                                           (10a)   

SHV(θ:ρ0,φ0) ≈ -iε cos(φ0) [SVV(θ) cos(θ) - SHH(θ)] / sin(θ)  .                                         (10b) 

 Another accurate transitional approximation to the far-zone scattered electric field in the near-forward direction, 

θ~0°, was derived in [2] for a particle with 2πa/λ≫1, and a beam with s≪1.  For an x-polarized incident Gaussian 

beam translated off-axis in an arbitrary direction, we found that   

                                                                                             ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈ [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2) ×{(an + bn) J0(An) - (an – bn) J2(An) [X cos(2φ0) + Y sin(2φ0)]} ux 
                                                                                           n=1  

                                                          ∞ 

     + [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2) × (an – bn) J2(An) [Y cos(2φ0) - X sin(2φ0)] uy  .                              (11)   

                                                        n=1 
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The x component of Eq.(11) is EVV and the y component is EVH.  Similarly, for a y-polarized incident Gaussian 

beam translated off-axis in an arbitrary direction, we found that 

                                                                                             ∞ 

Escatt(r,θ,φ;ρ0,φ0) ≈
  [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2)                                         

                                                                                           n=1 

                                             × (an – bn) J2(An) [Y cos(2φ0) – X sin(2φ0)] ux 

                                                                     ∞ 

             + [iE0/(kr)] exp(ikr) ∑ Fn (n+1/2) 
                                                                   n=1 

                              ×{(an + bn) J0(An) + (an – bn) J2(An) [X cos(2φ0) + Y sin(2φ0)]} uy  .   (12)        

The x component of Eq.(12) is EHV and the y component is EHH.  For off-axis incidence in the φ0=-90° direction in 

the horizontal scattering plane, now given by φ=±90° and θ≥0°,    

An = (n+1/2) (iε ∓ θ)                                                                                                (13a) 

X =  1                                                                                                                        (13b)    

Y = 0  .                                                                                                                      (13c) 

For off-axis incidence in the φ0=180° direction perpendicular to the horizontal scattering plane, again given by 

φ=±90° and θ≥0°,   

An = (n+1/2) (θ2 - ε2)1/2                                                                                                                                            (14a) 

X =  - (θ2 + ε2 ) / (θ2 - ε2)                                                                                           (14b)    

Y = ± 2i θε / (θ
2 - ε2)  .                                                                                               (14c) 
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(a) 

 
(b) 

 
(c) 

Fig.1.  (a) A Gaussian beam of electric field half-width w0 incident off-axis in the horizontal scattering plane at ρ0, φ0=-90° on a spherical particle 

of radius a.  The center of the beam is at C.  Near-forward transmitted rays are incident at T, and near-forward externally reflected rays are 

incident at R. (b) Near-forward exact GLMT scattered intensity of Eq.(3a) for off-axis incidence in the φ=90° scattering plane as a function of the 

scattering angle θ in the VV channel for λ=0.5145μm, w0=20μm, ρ0=40μm, φ0=-90°, a=43.3μm, and M=1.33.  (c)  The intensity of (b) along with 

that of the p=0,1 terms of the Debye series decomposition of the VV scattering amplitude. 
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3.  The Role of Diffraction 

Figure 1a shows the geometry of a Gaussian beam with λ=0.5145μm, w0=20μm that is translated off-axis with 

ρ0=40μm, φ0=-90° in the horizontal scattering plane, and is incident on a spherical particle with a=43.3μm, M=1.33 

whose center is at the origin of coordinates.  The figure’s point of view is that of an observer on the –z axis looking 

at both the beam and particle in the xy plane.  Figure 1b gives the exact co-polarized GLMT scattered intensity of 

Eq.(3a) in the VV channel for -10°≤θ≤10° in the horizontal φ=90° scattering plane, and is an enlarged version of the 

small-θ region in Fig.2 of [1].  The strong intensity peak centered on θ=0° is due to the azimuthal focusing produced 

by diffraction, and scaling as a2 rather than as a which is characteristic of geometrical optics.  In ray theory, rays 

incident on the sphere equator in the horizontal scattering plane are transmitted through and reflected by the sphere 

in the same scattering plane, while rays incident in other planes of incidence, φ, remain in those other planes after 

interacting with the sphere.  Thus in the context of ray theory, the falloff of the intensity in Fig.1b for negative θ is 

due to the combination of diffraction and near-forward externally reflected rays incident in the horizontal scattering 

plane at y0≈-a, denoted by R in Fig.1a, and having intensity 

I
 ray

p=0 ≈ exp[-2 |ρ-ρ0|
2/w0

2] = exp[-2 (43.3-40.0)2/(20.0) 2] = 0.947                                     (15) 

with respect to the axial ray of unit intensity.  The oscillatory structure for positive θ is due to interference of 

diffraction with the much weaker directly transmitted rays incident in the horizontal scattering plane at small 

negative y0, denoted by T in Fig.1a, and having intensity 

I
 ray

p=1 ≈ exp[-2 |ρ-ρ0|
2/w0

2] = exp[-2 (40.0)2/(20.0)2] = 3.35×10-4   .                                    (16) 

This interpretation is reinforced by the Debye series calculation shown in Fig.1c.   

Figure 2a shows the geometry of the same beam and particle, but with the beam now incident off-axis with 

ρ0=40μm, φ0=180° perpendicular to the horizontal scattering plane.  Figure 2b gives the exact GLMT scattered 

intensity of Eqs.(3a),(3b) in the co-polarized VV and cross-polarized VH channels for -10°≤θ≤10° in the horizontal 

scattering plane, and is an enlarged version of the small-θ region in Fig.4 of [1].    The strong central diffraction 

peak rises six orders of magnitude above the near-constant background provided by the weak directly transmitted 

rays incident in the scattering plane at small y0, denoted by T in Fig.2a, and having the intensity of Eq.(16).  The 

contribution of the much weaker near-forward externally reflected rays that are incident at y0≈±a, denoted by R in 

Fig.2a, and having intensity  

I
 ray

p=0 ≈ exp[-2 |ρ-ρ0|
2/w0

2] = exp{-2 [(40.0)2+(43.3)2]/(20.0)2} = 2.85×10-8 ,                 (17) 

is negligible in comparison to that of the near-forward transmitted rays. It should be stressed that Figs.1b,2b show 

the near-forward scattered intensity alone.  In experimental situations, the far-zone beam fields must be added to the 

near-forward scattered fields to produce the total observed fields [5-8].    
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(a) 

 
(b) 

Fig.2.  (a) A Gaussian beam of electric field half-width w0 incident off-axis perpendicular to the horizontal scattering plane at ρ0, φ0=180° on a 

spherical particle of radius a.  The center of the beam is at C.  Near-forward transmitted rays are incident at T, and near-forward externally 

reflected rays are incident at R. (b) Near-forward exact GLMT scattered intensity of Eqs.(3a),(3b) as a function of the scattering angle θ in the 

VV and VH channels for λ=0.5145μm, w0=20μm, ρ0=40μm, φ0=180°, a=43.3μm, M=1.33, and φ=90°. 

Although the size of the VV diffracted intensity peak is by definition the same for off-axis incidence in the 

scattering plane and perpendicular to it (2.28×108 in this example), it was noted in [9,10] that the width and shape of 

the diffraction patterns are very different.  This can be understood using three related arguments, each being more 

detailed and realistic than the preceding one.  The first argument is that since the diffracted field is approximately 
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the Fourier transform of the beam’s electric field after being apertured by the particle [3,4], the difference in the 

diffraction profiles for off-axis incidence in the scattering plane and perpendicular to it can be understood in terms 

of the size-bandwidth theorem for Fourier transforms.  Since the fraction of the beam not obscured along the y axis 

by the sphere in Fig.1a is smaller than the fraction not obscured in the y direction tangent to the lower edge of the 

sphere in Fig.2a, its far-zone diffraction pattern in the y direction in Fig.1b should be wider than it is in Fig.2b.  

Also, since the section through the beam taken in the y direction tangent to the lower edge of the sphere in Fig.2a is 

Gaussian, the diffracted field in Fig.2b should be Gaussian as well.  

3  
Fig.3.  Near-forward exact GLMT VV scattered intensity of Fig.1b as a function of the scattering angle θ for off-axis incidence in the scattering 

plane, along the approximation of Eqs.(11),(13a)-(13c) for 0°≤|θ|≤2° and the approximation of Eq.(5) for 2°≤|θ|≤10°.  

 

 
Fig.4.  Near-forward exact GLMT VV and VH scattered intensity of Fig.2b as a function of the scattering angle θ for off-axis incidence 

perpendicular to the scattering plane, along with the approximation of Eqs.(11),(14a)-(14c) for 0°≤|θ|≤2° and the approximation of Eqs.(8),(9a) 

for 2°≤|θ|≤10°. 

 

Figure 3 shows the near-forward scattered VV intensity of Fig.1b for off-axis incidence in the scattering plane 

along with the small-angle transitional approximation of Eq.(11) for  0°≤|θ|≤2° and the large-angle transitional 
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approximation of Eq.(5) for 2°≤|θ|≤10°.  The large-angle approximation was not considered for angles smaller than 

2° because it diverges as θ→0°.  Similarly, the small-angle approximation was not considered for angles larger than 

2° because the computer subroutine we used for the Bessel function of a complex argument was found to become 

unstable for arguments larger in magnitude than 20, which for our example corresponds to |θ|≥2.24° for the highest 

included partial wave.  Figure 4 shows the near-forward scattered VV and VH intensity of Fig.2b for off-axis 

incidence perpendicular to the scattering plane along with the two approximations with the same crossover point of 

θ=2°, using Eqs.(8),(9a) rather than Eq.(5) for the large-angle approximation.  In each of the two cases the two 

approximations fit the general magnitude of the VV scattered intensity quite well, and they also do a reasonable job 

reproducing the basic structure of the much weaker VH scattered intensity.  But the interference structure of the 

p=0,1 terms of the Debye series in Fig.3 is rendered 180° out of phase with respect to that of the exact GLMT 

intensity.  This will be commented on in depth in Sec.5.          

In order to understand the shape of the diffraction peak on a more quantitative level, we define diffraction of the 

incident beam by the sphere to be the portion of the scattering amplitudes that is independent of the sphere’s 

composition (see pp.209-210 of [11], and [12]).  In the context of the Debye series expansion of the partial wave 

scattering amplitudes [13-17], this corresponds to an=bn=1/2, which are then substituted into the near-forward 

approximation to the GLMT scattered electric field of Eqs.(11),(12).  We then obtain 

                                                                                           ∞ 

EVV
diffracted(θ,φ;ρ0,φ0) = EHH

diffracted(θ,φ;ρ0,φ0)  ≈ [iE0/(kr)] ∑ Fn (n+1/2) J0(An)            (18a) 

                                                                                          n=1 

EVH
diffracted(θ,φ;ρ0,φ0) = EHV

diffracted(θ,φ;ρ0,φ0) = 0  .                                                       (18b) 

Equation (18b) suggests that diffraction is polarization-preserving, and thus will not contribute to the cross-polarized 

intensity observed in Fig.2b.  This is not unexpected since diffraction of a plane wave by a straight-edge obstacle is 

also polarization-preserving when the incident wave is polarized either parallel or perpendicular to the edge (see 

Sec.11.5 of [18]).  An alternate but equivalent interpretation of diffraction is given in [4].  In the appendix of [2] it 

was shown that when the van de Hulst localization principle (see pp.208-209 of [11]) is applied to Eq.(18a) for a 

large particle, 2πa/λ≫1, to approximately convert the sum over partial waves n into an integral over the impact 

parameter kρ' via (n+1/2) → kρ', the result is identical to Fraunhofer diffraction of a Gaussian beam by a circular 

obstacle of radius a,  

                                                                   

E
diffracted(r,θ,φ;ρ0,φ0) =  [iE0/(kr)] exp(ikz) exp(-ρ0

2/w0
2) 

   
                                ka 

                             × ∫ (kρ') d(kρ') exp[-s2 (kρ')2] J0(A)  ,                                               (19)                               

                              kρ'=0 
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where  

A = (kρ') [θ2 – ε2 + 2i θε cos(χ)]1/2  .                                                                            (20) 

The second argument motivating our understanding of the structure of the diffracted intensity of Figs.1b,2b 

considers a sequence of diffraction geometries for which the obstacle has a straight-edge, rather than the curved 

edge implicit in Eq.(19).  Let the electric field of an incident on-axis beam be  

E(ρ,φ) = E0 exp(-ρ2/w0
2)                                                                                              (21) 

in the z=0 plane that contains the obstacle.  (i) If the obstacle is absent, the beam of Eq.(21) freely diffracts to the 

far-zone where it impinges on a viewing screen.  The far-zone diffracted field in this case is proportional to the 

Fourier transform of the incident field, as it was in Eq.(19) for the curved aperture.  The diffracted beam is given by 

E
diffracted(r,θ,φ) = [K/(2s

2)] exp[-θ2/(4s
2)]                                                                    (22) 

where  

K ≡ [iE0/(kr)] exp(ikr)  .                                                                                              (23) 

The Fraunhofer diffracted electric field is independent of φ and Gaussian in θ since the incident field is Gaussian in 

the z=0 plane.  (ii) Now let a large obstacle having a straight edge along the horizontal axis of the z=0 plane cover 

half of the on-axis beam incident on it, and let a detector array be oriented on the horizontal axis of the distant 

viewing screen, parallel to the straight-edge.  The Fourier transform of the semi-circular beam leaving the z=0 plane 

gives the far-zone diffracted field at the detector array     

E
diffracted(r,θ) = [K/(4s

2)] exp[-θ2/(4s
2)]  .                                                                     (24) 

Since half of the beam is uncovered, half of the field strength of the diffracted field remains.  (iii) Now let the 

detector array on the viewing screen be oriented perpendicular to the straight-edge, both above it (+) and below it  

(-).  The far-zone diffraction pattern on the detector array in this perpendicular orientation is  

E
diffracted(r,θ) = [K/(4s

2)] {exp[-θ2/(4s
2)] ∓ iG(s2,θ)}                                                   (25) 

where 

                                          ∞                                                                 π 

G(s2,θ) = (2s
2/π) ∫ (kρ') (kdρ') exp[-s2 (kρ')2] ∫ sin[(kρ') θ sin(φ')] dφ'   .                     (26) 

                                         0                                                                  0 

It should be noted that G(s2,θ)=0 when θ=0° so that the field of Eq.(25) has the same value in the forward direction 

as that of Eq.(24).  In addition, both the Gaussian and the function G in Eq.(25) are purely real, so that the diffracted 

intensity is   

|Ediffracted|2 =  [|K|2/(16s
4)] {exp[-θ2/(2s

2)] + G2(s2,θ)}  ,                                                  (27) 
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both in the illuminated region above the straight-edge and in the shadowed region below it.  We conclude from (ii) 

and (iii) that although half of the original Gaussian beam is transmitted beyond the straight-edge, the far-zone 

diffraction pattern has a much simpler structure when the detector array on the viewing screen is oriented parallel to 

the straight-edge than when it is perpendicular to it. 

Now let the coordinate axes in the z=0 plane and on the viewing screen remain fixed while both the beam and 

straight-edge are translated through the vertical distance ρ0 in the z=0 plane, perpendicular to the horizontal direction 

of the straight-edge.  (iv) If a detector array on the viewing screen is oriented parallel to the horizontal straight-edge 

as in (ii), the diffracted field at the detector array is again given by Eq.(24).  Nothing has changed since the semi-

circular beam leaving the z=0 plane has been translated perpendicular to the horizontal detector array.  (v) But if the 

detector array is now oriented perpendicular to the horizontal straight-edge as in (iii), the diffracted field is 

E
diffracted(r,θ) = [K/(4s

2)] {exp[-θ2/(4s
2)] ∓ iG(s2,θ)} exp(ikρ0)  .                                  (28) 

Since the beam and straight-edge have been translated in the direction of the detector array, the Fourier transform of 

the initial field distribution acquires the translation phase term exp(ikρ0).  The diffracted intensity continues to be 

given by Eq.(27).   

These five examples provide an analogy to the problem of current interest since the geometry of (iv) is analogous 

to that of Fig.2a, with the edge in question being the curved edge of the sphere rather than a straight-edge, and the 

detector array in the scattering plane oriented in the y direction.  Similarly, the geometry of (v) is analogous to that 

of Fig.1a with the detector array again oriented in the y direction.  Since ρ0=40μm and a=43.3μm, roughly half of the 

incident beam is cut off by the spherical particle, as in the straight-edge cases (ii)-(v) discussed above.  According to 

Eq.(24) for cases (ii,iv), if exactly half of the incoming beam was cut off by the straight-edge, the intensity at the 

diffraction maximum of Eq.(24) would be  

I
diffracted(0) = 1/(16s

4) = 2.235×108   .                                                                               (29) 

The intensity of the diffraction maximum in Figs.1b,2b is 2.28×108, which is larger than the prediction of Eq.(29) by 

2.0%.  The predicted diffracted intensity in Eq.(24) for cases (ii,iv) is parabolic when graphed semi-logarithmically, 

and qualitatively fits the diffraction peak of Fig.2b quite well.  In addition, an analog to the G2(s2,θ) term in Eq.(27) 

for cases (iii,v) should broaden the diffractive peak for the geometry of Fig.1a with respect to that of Fig.2a.      

The third argument for understanding the structure of the diffracted intensity considers the integral of Eq.(19) 

itself which describes a circular aperture, or a circular obstacle via Babinet’s principle, rather than for the straight-

edge discussed in the previous paragraphs.  By performing successive integration by parts, the integral can be 

evaluated analytically to give an infinite series of contributions [19,20].  One version of the result is appropriate for 

w0<a where the beam is narrow and the circular aperture is wide, so that the aperture cuts off the outer portion of the 

beam.  The other version is appropriate for w0>a where the beam is wide and the circular aperture is narrow, so that 

the small portion of the beam passed through the aperture resembles a plane wave with small amplitude and phase 

distortions.  For the w0<a case of interest here, let 
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θ' = θ/ε                                                                                                                           (30) 

be the near-forward scattering angle expressed in terms of multiples of ε of Eq.(4d).  Then for a Gaussian beam 

incident off-axis with φ0=180° perpendicular to the φ=±90° and θ≥0° scattering plane as in Figs.2a,2b, Eq.(19) 

simplifies to 

E
diffracted(r,θ,φ=±90°) = [K/(2s

2)] {exp[-θ2/(4s
2)]  

                                           ∞ 

          – exp[-(ρ0
2+a

2)/w0
2] ∑ [(ρ0/a) (1-θꞌ2)1/2]n In[2ρ0a(1-θꞌ2)1/2/w0

2]} .                        (31) 
                                          n=0 

The first term of Eq.(31) is the diffraction pattern of complete beam of Eq.(22) in order to accommodate the on-axis 

ρ0→0 limit of Eq.(19).  Since roughly half of the incident beam in Fig.2a with ρ0=40μm is cut off by the sphere with 

a=43.3μm, the infinite series of modified Bessel functions in the second line of (31) should add up to be roughly 

half of the first term in order to qualitatively resemble Eq.(24) for the straight-edge geometry of cases (ii,iv).  The 

extra complication provided by modified Bessel functions is due to the fact that the edge of the particle projected 

into the z=0 plane is circular rather than straight.   

For a Gaussian beam incident off-axis with φ0=-90° in the φ=±90° and θ≥0°scattering plane, the integral of 

Eq.(19) simplifies to  

E
diffracted(r,θ,φ=90°) = [K/(2s

2)] {exp[-θ2/(4s
2)] exp(∓ikρ0)  

                                                       ∞ 

                      – exp[-(ρ0
2+a

2)/w0
2] ∑ [ρ0(1±iθ')/a]n In[2ρ0a(1±iθ')/w0

2]}  .                (32) 
                                                      n=0 

The infinite series of modified Bessel functions in Eq.(32) should qualitatively resemble the ∓ iG(s2,θ) term for the 

straight-edge obstacle of Eq.(25) for cases (iii,v), multiplied by the translation phase factor exp(ikρ0).  

4.  Debye Series Decomposition of the Co-Polarized and Cross-Polarized Scattering Amplitudes 

The TM and TE Lorenz-Mie partial wave scattering amplitudes an and bn, respectively, can be exactly decomposed 

into an infinite series of terms, called the Debye series [13-17], which in the short wavelength limit, 2πa/λ≫1, can 

be interpreted as diffraction of the partial wave n, external reflection, transmission, and transmission following p-1 

internal reflections with p≥1.  In order to guarantee convergence in the n→∞ limit, diffraction and external 

reflection are combined together as the p=0 term of the series.  The Debye series for VV scattering for a Gaussian 

beam incident off-axis in the scattering plane has previously been computed and analyzed [21,22], and need not be 

considered further here.  Rather, in this section we focus on VV, VH, HV, and HH scattering for a Gaussian beam 

incident off-axis perpendicular to the scattering plane.  Figure 5 shows the p=0,1,2,3 Debye series terms replacing 

the complete an and bn in the exact GLMT scattered intensity, in each of the four polarization channels in the φ=90° 

scattering plane.  The beam has λ=0.5145μm, w0=20μm, ρ0=40μm, φ0=180° and the particle has a=43.3μm, M=1.33.  

For comparison, Fig.5 also repeats the exact GLMT results of Figs.4,5 of [1] which use the complete partial wave 

scattering amplitudes an and bn . 
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(a) 

 
(b) 

Fig.5.  Exact GLMT VV, VH, HV, HH scattered intensity as a function of the scattering angle θ of Figs.4,5 of [1], and the p=0,1,2,3 terms of the 

Debye series decomposition of the scattering amplitudes.  

As was seen in Sec.3, both the VV and HH intensities are dominated diffraction for 0°<θ<1°.  They are then 

dominated by transmission for 1°<θ<40°.  At this point external reflection, transmission, and scattering with two 

internal reflections (p=3) become comparable in strength, causing a complicated high-frequency interference pattern 

for 40°<θ<90°.  In the HH channel, the role of external reflection is reduced near the Brewster angle dip occurring at 

θ
B

0=73.9° in ray theory.  External reflection then dominates for 90°<θ<140°, at which point the contribution of one 

internal reflection (p=2) becomes comparable in magnitude to external reflection.  This produces another high-

frequency interference pattern that continues and gradually widens as it enters the glory region, θ~180°.  The 

progression of dominant terms is the same for VH scattering.  But for HV scattering, the p=3 Debye term is too 

small at θ≈60° to interfere with external reflection and transmission.  Rather, the p=3 term interferes with external 

reflection in the vicinity of the second order rainbow occurring at θR
3=129.9° in ray theory.  
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Equations (10a),(10b) approximately relate the VH and HV scattering amplitudes to the VV and HH amplitudes 

for 0°≪θ≪180°.  It was seen in Sec.3 and in [2] that for the example considered here, “much less than” means “to 

within about 1° of”.  Thus for θ reasonably close to 0°, both |SVH|2 and |SHV|2 should be approximately given by ε2|SVV 

- SHH|2/sin2(θ), and thus should be approximately equal to each other.  Similarly, for θ reasonably close to 180°, both 

|SVH|2 and |SHV|2 should be approximately given by ε2|SVV + SHH|2/sin2(θ), and thus should again be approximately 

equal to each other.  Inspection of Fig.5 shows that this is roughly the case.  At θ=90°, Eqs.(10a),(10b) predict that 

|SVH|2≈ε2|SVV|2, and |SVH|2≈ε2|SHH|2.  Inspection of Figure 5 shows that at θ=90° and for p=0,3, |SVH|2≈2.5×10-4|SVV|2.  

Similarly, for p=0,1,3,  |SHV|2≈2.5×10-4|SHH|2. This is in reasonable agreement with ε2=2.68×10-4 for this example.  

These results confirm the approximate validity of Eqs.(10a),(10b).  They also explain why the TE p=2 rainbow 

appears prominently in both the VH and HV intensities of Fig.5.  The p=2 rainbow occurs at θR
2=137.5° in ray 

theory.  In Fig.5 the |SVV|2 intensity is about 10-1 at θR
2, whereas the|SHH|2 intensity is about10-3 there.  This difference 

in strength is due to two effects. (i) The principal rainbow peak is absent for the TM polarization [16,23], thus 

suppressing the strength of the TM rainbow relative to that of the TE rainbow.  (ii) As is seen in Fig.2a and 

Eqs.(16,17), rays incident in the scattering plane with y≈0 near the center of the sphere are much stronger than rays 

incident at y≈±a due to the Gaussian falloff of the incident beam.  As y increases, the scattering angle of the p=2 

rays decreases from θ=180° to the Descartes rainbow angle at θR
2=137.5°.  Near the rainbow angle these rays are 

called lower supernumerary rays.  As y continues to increase, the scattering angle of the rays then increases to the 

critical angle θC
2=165.0° for grazing incidence.  These rays are called upper supernumerary rays.  The strength of 

the rays continually decreases during this progression.  This effect serves to weaken the p=2 upper supernumerary 

rays with respect to the lower supernumerary rays, thus more rapidly damping out the supernumerary interference 

pattern.  It also is the cause of the continuous rise in p=2 scattering as θ→180°.  Since |SVV|2≈10-1 and |SHH|2≈10-3 at 

the p=2 rainbow and cos(θR
2)=-0.737, Eqs.(10a),(10b) predict that the SVV contribution to both VH and HV 

scattering will dominate over the SHH contribution in the vicinity of the p=2 rainbow.   

Figure 7a of [21] where 2πa/λ=529 and Fig.2a of [25] where 2πa/λ=100 show that for plane wave incidence, the 

p=0 external reflection intensity decreases only very slowly from θ≈0° to θ=180°.  But for VV, VH, HV, and HH 

scattering in Fig.5 where 2πa/λ=529, the external reflection intensity increases as a function of θ and dominates the 

scattering for 90°<θ<140°.  This can be explained by the fact the incident rays in Fig.2a increase in strength from 

y≈±a, corresponding to θ≈0°, to y≈0, corresponding to θ≈180°.  The p=1 contribution in Fig.5 to VV scattering is 

nearly equal to that of HH scattering, and is similar to the monotonic decrease of the p=1 contribution for plane 

wave incidence in Fig.7a of [21] and Fig.2b of [24].  Similarly, the p=1 contribution to VH scattering in Fig.5 is 

nearly equal to that of HV scattering, and goes to zero as θ→0°, as was shown in [2].  In ray theory, grazing incident 

rays are transmitted with zero intensity at the critical scattering angle θC
1=82.5°.  In wave theory, the scattered 

intensity continues beyond this angle due the Fock transition to electromagnetic surface waves [15].  The surface 

wave contribution is evident in Fig.5 for θ>82.5°.  The rate of falloff is roughly linear in the semi-logarithmic figure, 

indicating that the surface wave attenuation is roughly exponential, as it was for plane wave incidence.  Since the 

strength of the incident rays decreases from y≈0 to y≈±a as the scattering angle decreases from θ=0° to θC
1, the p=1 
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intensity for off-axis incidence perpendicular to the scattering plane should fall off faster than it does for plane wave 

incidence. 

As mentioned above, the major difference of the p=2 TM rainbow from the TE rainbow for both plane wave and 

off-axis Gaussian beam incidence perpendicular to the scattering plane is the suppression of the principal rainbow 

peak due to the fact that the TE rainbow scattering amplitude is approximately proportional to the Airy function 

Ai(x), while the TM rainbow scattering amplitude is approximately proportional to a linear combination of Ai(x) and 

its derivative [16,23], Ai′(x).  However, the difference of the p=3 TM rainbow in the HH scattering channel in Fig.5 

from the TE rainbow in the VV scattering channel is more substantial, and is similar to the differences encountered 

in p=3 scattering of a plane wave, as seen in Fig.11 of [24].  The p=3 rainbow in the HH channel is almost devoid of 

supernumeraries for 110°<θ<125°, and has a low-amplitude, strong-contrast interference pattern for 95°<θ<105°.  

This behavior may be understood as follows.  As rays are incident in the horizontal scattering plane from the sphere 

center y≈0 to its edge y≈a, the p=3 deflection angle Θ (scattering angle θ in parentheses) starts at Θ=360° (θ=0°).  It 

then decreases (increases) to the Descartes rainbow angle ΘR
3=230.1° (θR

3=129.9°).  The deflection (scattering) 

angle then increases (decreases) to the critical angle ΘC
3=247.5° (θC

3=112.5°) for grazing incidence.  

Electromagnetic surface waves begin at this point, continue the role played by the upper supernumerary rays to 

larger Θ (smaller θ), and exponentially decrease as a function of Θ (increase as a function of θ).  At the same time, 

the incident rays associated with the Gaussian beam progressively decreases in strength from the value given in 

Eq.(16) to the value given in Eq.(17).  This causes the p=3 scattered intensity to also decrease as a function of θ, 

with the partial focusing associated with the p=3 rainbow temporarily boosting the scattered intensity back up before 

it continues to decrease again.  Since the internal reflection Brewster angle for p=3 scattering occurs for θB=115.5° 

in ray theory, the strength of the lower supernumerary rays near this angle and having impact parameter 

b≡sin(θi)~0.80 are greatly suppressed with respect to that of the upper supernumerary rays, severely reducing the 

bright-to-dark contrast of the supernumerary interference pattern.  The oscillatory structure of p=3 HH intensity in 

Fig.5 for 95°<θ<105° is due to interference of the nearly equal contributions of (i) electromagnetic surface waves 

that grow in strength as a function of θ as they approach θC
3, with (ii) lower supernumerary rays of smaller impact 

parameters (e.g. b~0.70) that decrease in strength as a function of θ due to a combination of (a) the decreasing 

strength of the incident Gaussian rays and (b) the approach to the Brewster angle region. 

5.  Time-Domain Analysis of Co-Polarized and Cross-Polarized Scattering 

In time-domain scattering, an electromagnetic pulse is incident on the sphere, rather than a plane wave or a 

transversely localized beam of infinite temporal extent.  In this section we take the pulse to be both spatially and 

temporally Gaussian.  Its electric and magnetic field have a transverse half-width w0 and a temporal half-width σ/c.  

Its frequency spectrum is centered on the wavelength λ0 whose associated wave-number is k0=2π/λ0.  When a 

spatially Gaussian beam of wave-number k is incident on the sphere, we denote the scattered field by EGLMT(k,θ).  

Then for an incident pulse containing a spectrum of wave-numbers, the scattered electric field is the GLMT 

response of the single wave-number k integrated over the spectrum of the beam [25-31], 
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                                                                  ∞ 

Escattered(t,θ) = [E0σ/(2π
1/2)] ∫ dk EGLMT(k,θ) exp[-(k-k0)

2
σ

2/4] exp(-ickt) .                           (33) 
                                                                -∞ 

Light scattered via certain physical processes, such as transmission, has a relatively short path length inside the 

sphere and exits it soon after the pulse’s arrival.  On the other hand, light scattered via other physical processes, such 

as transmission following a number of internal reflections, has a relatively long path length inside the sphere and 

exits it long after the pulse’s arrival.  In this way time-domain scattering displays the unique signature of each 

physical process contributing to scattering without having to explicitly calculate the terms of the Debye series. 

        
(a)                                                                  (b) 

 
(c) 

Fig.6. Time-domain scattered intensity as a function of the scattering angle θ and time delay t of the exact VV scattering amplitude for a Gaussian 

pulse with λ0=0.5145μm, σ/c=3.00fs, and w0=20μm by a spherical particle with a=43.3μm, M=1.33.  (a) The pulse is translated off-axis with 

ρ0=40μm, φ0=-90° in the φ=90° scattering plane. (b) A pair of coherent identical pulses are symmetrically translated off-axis with ρ0=40μm, 

φ0=±90° in the φ=90° scattering plane. (c) Intensity of the p=0 Debye term as a function of the scattering angle θ for the beam with (i) ρ0=40μm, 

φ0=-90°, (ii) ρ0=40μm, φ0=90°, and (iii) the interference pattern for p=0 scattering when both beams are present.   
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Figure 6a shows the time-domain graph of the exact GLMT scattering amplitude of Eq.(3a) for the VV 

polarization channel for a Gaussian pulse with λ0=0.5145μm, w0=20μm incident on a spherical particle with 

a=43.3μm, M=1.33.  The temporal characteristics of the pulse are σ/c=3.00fs, giving a temporal full-width-at-half-

maximum of the electric field of 5.0fs.  In the Fourier transform in Eq.(33), the wavelength range integrated over is 

0.348μm≤λ≤0.985μm, corresponding to truncating the incident Gaussian intensity at -60dB.  The pulse is translated 

off-axis with ρ0=40μm, φ0=-90° in the φ=90° scattering plane.  The integral in Eq.(33) was evaluated using a 

213=8,192 point Fast Fourier Transform (FFT), the details of which are given in the Appendix.  The graph, with an 

angular resolution of Δθ=1°, shows the signature of the p=0,1,2,3 Debye series processes.  The graph is similar to 

that for scattering by a plane wave pulse having similar parameters, as shown in Fig.5 of [29], except that (i) the 

angular range of Fig.6a is unfolded to 0°≤θ≤360°, compared to the 0°≤θ≤180° angular range of Fig.5 of [29], and 

(ii) Fig.6a does not show the trajectories of rays incident with y>0 in Fig.1a because they are suppressed by the 

Gaussian falloff of the beam.   

     Only one arm of the inverted-V signature of diffraction is present in Fig.6a at θ≈0°, t≈289fs due to light deflected 

past the y=-a edge of the sphere, whereas both arms are evident for plane wave incidence in Figs.5,6a of [29] due to 

rays of equal strength deflected past both the y=±a edges.  The shape of the external reflection portion of the p=0 

signature is symmetric about the location of the axially incident ray at θ=180°, t≈0fs.  But the reflected signal 

becomes progressively weaker for θ<180° and progressively stronger for θ>180° due to the strength of the rays of 

the incident Gaussian beam becoming weaker for y>0 and stronger for y<0.  The single arm of the diffraction 

portion of the p=0 signature for θ≥0°, t≈289fs is the continuation of p=0 external reflection for θ≤360°.  Similarly, 

the shape of the p=1 signature is symmetric about the location of the axial ray at θ=0°, t=384fs.  But again the 

transmitted signal becomes progressively weaker for θ<0° (i.e. θ<360° in the figure) and progressively stronger for 

θ>0° due to the Gaussian falloff of the strength of the incident rays.  The small portion of the p=1 signature for 

θ≤360°, t≈384fs is the continuation of the p=1 signature for θ≥0°.  The inverted curving-V signals of the p=2,3 

rainbows are also evident. 

      In order to validate our interpretation of the p=0,1,2,3 structures in Fig.6a, Fig.6b shows the time-domain graph 

for a pair of identical coherent Gaussian beams with ρ0=40μm, φ0=±90° incident on the particle.  Whereas the single 

Gaussian beam of Fig.6a illuminated one side of the particle, the additional beam in Fig.6b now illuminates the other 

side.  In particular, the pair of beams produces both arms of the characteristic inverted-V signature of diffraction by 

a plane wave, where light is deflected equally at both edges of the particle.  Figure 6c shows the intensity of the p=0 

Debye term as a function of θ when the first beam alone is present, the second beam alone is present, and when both 

beams are present.  The periodicity of the interference pattern produced when both beams are present corresponds to 

the interference of two effective point sources spaced by d=84.8±0.7μm.  This is comparable to the particle diameter 

of 86.6μm, and can be interpreted as the combination of diffraction and external reflection at the two opposite edges 

of the particle being the two effective point sources of the interference pattern.         
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Fig.7.  Time-domain scattered intensity as a function of the scattering angle θ and time delay t of the approximation of Eqs.(5),(11) for the same 

pulse and particle as Fig.6. 

For comparison to Fig.6a, Fig.7 shows the time-domain graph of the approximation of Eqs.(5),(11) in the VV 

scattering channel for the same Gaussian pulse translated off-axis in the scattering plane, with Δθ=2°, and using a 

217=131,072 point FFT to reduce the noise level and aliasing in the graph.  The computer run time to produce Fig.7 

was 18h using an Intel i7 processor running at 3.8GHz in “turbo-mode”.  Although the time delay matches that of 

Fig.6a for the p=0 signature, an echo of the p=3 rainbow signal is superimposed on it.  The p=1,2,3 signals have the 

correct shape, but their time delay is shifted, and they are joined together rather than being distinct as in Fig.6a.  At 

least three echoes of the p=1,2,3 structure occur with decreasing intensity at time delays in multiples of 

Δt=295.03±0.18fs  for larger t, and at least one occurs for smaller t.  The reason for this artifact is not presently 

understood.  

The problematical comparison between the approximation of Eqs.(5),(11) and the exact GLMT result for time-

domain scattering occurs in spite of the good fit of the approximation to the overall magnitude of the exact GLMT 

intensity in the frequency-domain, as illustrated in Fig.1b here and Fig.1 of [2].  We believe the reason for the 

problematical comparison is as follows.  The Fourier transform in Eq.(33) interrogates oscillations of the scattering 

amplitude with 217 reference spatial frequencies in order to precisely determine the phase of each component, and 

thus to determine its location on the time-domain graph.  As was seen in Sec.4, the high-frequency oscillations in the 

exact GLMT intensity are caused by the interference of two or more Debye series processes of comparable 

magnitude.  It was seen in Figs.1-6 of [2] that the phase of these oscillations for our approximation drifted with 

respect to the phase for the exact GLMT intensity.  Our approximation was based on the asymptotic approximation 

of the associated Legendre functions Pn
m[cos(θ)], and the GLMT angular functions πn

m(θ) and τn
m(θ) derived from 

them.  This asymptotic approximation was valid for 0°≪θ≪180° and n≫1 in order to avoid the Bessel-function-like 

focusing behavior in the θ≈0°, 180° regions, and to ensure that there are a large number of undistorted oscillations of 

the functions in the angular region between the two focusing regions, respectively.  It was seen in Sec.4 that 
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scattering into the first half of the forward hemisphere and the last half of the backward hemisphere is frequently due 

to paraxial rays.  Using the van de Hulst localization principle as a qualitative guide, such rays are expected to 

correspond to relatively low partial waves, where the asymptotic approximation to Pn
m[cos(θ)] is not valid.  So when 

a particular high-frequency oscillation in the intensity is caused by a Debye series term dominated by large n 

interfering with another Debye series term, such as p=0,1 in an angular region where it is dominated by small n, it is 

quite likely that our n≫1 approximation will not render the phase of the interference oscillation correctly.  Prime 

examples of this are the p=0,1 interference in Fig.3 for 4°≤θ≤10°, and the interference of p=0 external reflection 

with the principal peak of the p=3 rainbow in Fig.1 of [2].  We had noted in [2] that our approximation contains an 

infinite series of terms of order (T), (T/n), and smaller.  Only the first one or two terms of the series were used in 

obtaining Figs.3,4 here and Figs.1-6 of [2].  Including additional smaller terms of this series will not help resolve the 

phase drift of our approximation since all the terms in the series are derived from the n≫1asymptotic approximation 

of Pn
m[cos(θ)].  This appears to be a fundamental limitation of our approximation.  But it should be of only minor 

consequence if the detector array used in scattering experiments is sufficiently coarse so as to not resolve individual 

high-frequency intensity oscillations.    

 
Fig.8.  Time-domain scattered intensity as a function of the 

scattering angle θ and time delay t of the VV Lorenz-Mie 

scattering amplitude for a plane wave pulse with λ0=0.5145μm, 

σ/c=3.00fs by a spherical particle with a=43.3 μm, M=1.33.   

 
Fig.9.  Time-domain scattered intensity as a function of the 

scattering angle θ and time delay t of the VV Airy theory scattering 

amplitude for the same plane wave pulse and sphere as Fig.8. 

 

This problematical comparison for time-domain scattering is an example of the importance of phase information 

in signals, which was stressed in a general context in [32].  In order to validate this conjecture, we computed p=2 

scattering of an x-polarized temporally Gaussian and spatially plane wave pulse with λ0=0.5145μm, σ/c=3.00fs by a 

spherical particle with a=43.3μm, M=1.33, giving a size parameter of 2πa/λ=529.  The integral of Eq.(33) was 

evaluated using a 213=8,192 point FFT with only the p=2 portion of the an and bn partial wave scattering amplitudes, 
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as described in the Appendix.  The resulting time-domain graph in the vicinity of the first-order rainbow is shown in 

Fig.8, and is quite similar to Fig.10 of [29] for slightly different pulse parameters.  Time-domain scattering of the 

same beam by the same sphere was also computed with the exact Lorenz-Mie-Debye scattering response now being 

replaced by the Airy-theory response.  For a sphere of this size, Airy theory gives a close approximation to the p=2 

scattered intensity as shown in Fig.3 of [24] where 2πa/λ=1,000.  The phase of the Airy theory supernumerary 

interference pattern drifts only very slowly with respect to that of the exact Lorenz-Mie result.  But the time-domain 

graph for Airy theory in Fig.9 exhibits substantial differences from that of Fig.8, even quite close to the rainbow’s 

principal peak.  The reason for this is that the two arms of the time-domain signature in Figs.8,9 are the contribution 

of the two supernumerary rays, whose coalescence produces the principal rainbow maximum in ray theory at 

θ
R

2≈137.5°, t≈730fs in Fig.8 and at t≈290fs in Fig.9.  The difference in delay times is inconsequential, and merely 

reflects different conventions for the start of the delay-time clock.  The phase of each of the supernumerary rays is 

given by  

Φ = (4πa/λ) [2M cos(θt) +1 – cos(θi)] + ζ ,                                                                     (34) 

where θi is the angle of incidence of each of the two rays corresponding to the same scattering angle θ given by 

θ = 180° + 2θi - 4θt  ,                                                                                                      (35) 

θt is the transmitted angle whose value is related to θi by Snell’s law, and ζ is the non-path length scattering 

amplitude phase, which is 90° for the lower supernumerary ray and 0° for the upper supernumerary ray (see pp.206-

207 of [11]).  In Airy theory each of these phases is Taylor series expanded about the Descartes rainbow angle, and 

only the first two terms of the Taylor series expansion is retained [16].  This provides a good approximation to the 

rainbow intensity as a function of θ until the scattering angle gets sufficiently far into the supernumerary region.  

But the phase truncation is seen in Fig.9 to seriously distort the entire time-domain signature as a function of θ and t, 

producing a symmetric behavior of the two supernumerary rays in Fig.9, rather than the correct asymmetric behavior 

of Fig.8.  This example illustrates the importance of precise phase information for determining ray trajectories in 

time-domain scattering. 

6.  Final Thoughts 

This study was motivated by the common perception that since cross-polarized scattering cannot occur for an 

electromagnetic plane wave incident on a single homogeneous spherical particle, it continues to be impossible when 

the incident beam is transversely localized.  We found that this perception is incorrect, and that both co-polarized 

and cross-polarized scattering occur if an incident focused Gaussian beam is translated off-axis perpendicular to the 

scattering plane.  The question then becomes why does cross-polarized scattering occur for this geometry?  For 

scattering by a spheroid, the intuitive and easily visualized mechanism that produces nonzero cross-polarized 

scattering is that the plane of incidence of a skew ray changes at each interaction with the spheroid surface.  Thus 

the direction of the components of the electric field perpendicular and parallel to the plane of incidence changes as 

well [33].  But for scattering by a sphere, the wave theory origins of cross-polarized scattering are less intuitive, and 
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are instead most easily arrived at using a rather abstract mathematical analysis.  Cross-polarized scattering in these 

situations is due to the combination of circular symmetry breaking in wave theory for off-axis incidence, and the 

constraints imposed by the requirement that an off-axis electromagnetic beam satisfies Maxwell’s equations.     

      When the Gaussian beam is incident off-axis on the sphere, both the co-polarized and cross-polarized scattering 

amplitudes contain sums over partial waves and azimuthal modes, whereas scattering of a plane wave or an on-axis 

Gaussian beam requires only a sum over partial waves.   The additional complexity encountered when attempting to 

deal with the sum over azimuthal modes appears to not necessarily be an inevitable feature of the theory.  We 

devised an accurate approximation to the polarization-resolved scattering amplitudes which consists of an infinite 

series of contributions, each of which possesses the virtue that the sum over azimuthal modes can be evaluated 

analytically, both for θ in the near-forward- and near-back-scattering regions, as well as for 0°≪θ≪180°.  The sum 

of the contributions for 0°≪θ≪180° was found to be rapidly convergent for large particles and moderately focused 

beams, with only one or two terms required to produce a close match to the overall magnitude of the exact GLMT 

polarization-resolved scattered intensity.  We further probed the structure of the exact GLMT scattering amplitudes 

by examining the various terms of their Debye series expansion.  We also further probed the structure of the 

approximation by assessing its accuracy in the time-domain, where precise phase information was found to be as 

important as precise magnitude information.  We found that time-domain scattering accentuated the consequences of 

the phase drift in the high-frequency intensity oscillations inherent in our approximation.  It is hoped that the lessons 

learned here in the development of this approximation can lead to further developments and simplifications of the 

GLMT version of electromagnetic scattering of a transversely focused off-axis beam by a spherical particle. 

 

Appendix 

The details of the FFT algorithm as used in obtaining Fig.6 are as follows.  The angular frequency, ω0, 

corresponding to the central wavelength in the spectrum of the pulse, λ0=0.5145μm, is ω0=3.66366×1015 s-1.  With 

N=8,192 angular frequencies sampled on a grid of spacing (Δω), we chose ω0 to be one-quarter of the maximum 

frequency N(Δω), or 

(Δω) = 4ω0/N  .                                                                                                            (A1) 

The grid spacing, (Δt), in the time-domain is then 

(Δt) = 2π/[N(Δω)] = λ0/(4c) = 0.42875 fs,                                                                   (A2)  

which spatially corresponds to one-quarter of the central wavelength.   This gives the Nyquist time tNyquist=N(Δt)/2, 

and the first alias time 

talias = N(Δt) = 3,512.32 fs.                                                                                           (A3) 

The time delay of the signature of each Debye series process will thus repeat at multiples of ±talias. 
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      The time delay of the axial ray of the p Debye process with respect to that of the externally reflected axial ray, 

which is taken to be zero delay time, is 

taxial ray = 2apM/c = 383.9p fs  ,                                                                                     (A4) 

and the time delay of the grazing incidence ray is 

tgrazing incidence ray = 2a/c + 2ap(M2-1)1/2/c = (288.7 + 253.1p) fs.                                        (A5) 

The signature of the p=1 Debye process extends from 384 fs ≤ t ≤ 542 fs, excluding the portion for t > 542 fs due to 

electromagnetic surface waves.  For the p=10 Debye process, Eq.(A4) gives taxial ray=3,839 fs, which is greater than 

talias = 3,512.32 fs for N = 8,192.  Consequently, the lower first-alias for p=10 will appear at 327 fs, close to the 

time-domain signature of the p=1 Debye process.  This is also the case for the lower first-alias of 11≤p≤15, where 

Eq.(A5) gives the lower first-alias time of the grazing incidence ray as 573 fs.  In order to prevent Fig.6 from being 

contaminated by aliases of high-p processes, we computed the time delay signature of the 0≤p≤3 processes 

individually, and then composited them together.  Since each individual signature has a localized range of time 

delays, its aliases will not occur in the time delay interval used in the compositing (-50 fs ≤ t ≤ 1,200 fs in Fig.6).  

Alternatively, we could have used a much larger value of N with the entire GLMT response so as to hopefully move 

the aliases of high-p processes out of the range of the signature of the low-p processes of interest.  This strategy was 

used in Fig.7 where we used N = 131,072 for the time-domain representation of our approximation to the scattering 

amplitudes.  Such large values of N imply very long computation times and computer memory can become an issue, 

which is why in Fig.7 we used Δθ=2°, rather than the Δθ=1° as in Fig.6.  
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